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B43 note: part 2.

§11) The problem of existence of seclution formulas for
polynomial egqueations,

(copyright 1996 by Roy Smith)

Galois theory provides the finsl step in the analysis of =olution
formulas for pelynomial sguations. The general formulas solving
pelynornials of degrees Z, 3, 4, which had been knewn since the 1bth
century, wers thoroughly analyzed hy LaGrange in 1770 with a
wiew Lo sclving the riddle of extending thern to higher degrees.
Proofs of the impossikility of such extensions followed by Rutfini in
1799 and Abel in 1826, the latter one apparently satisfying all
ohjections. After the resolution of the question of existenca of
gerieral solution formulas (velid for sll equations of a given degras),
it rermainsd for Galois to clarify the existence of solution farmules
valid for particular egquations of higher degresa. Hix theory
cornpletely reveals the “reason” for the existence or non existence of
wolution formulas invelving radicels, for ahy polynomial equation,
arnd aliows one in principle to distinguish schvabls equationz of any
degres fram unsolvable cnes. It works not only over @ but alzt over
any other field of coefficients, including vearisble coefficients, thus
handles general equations as well ax particular one:. To understand
Saloiz' formulation mnd sohuticn of the problem, first we look at the
knowrn sclution formulas for equationt of degreey 2 and 3.

For the solutisns x1, x2 of the quadratic £guation Rz*pxl-q = {, we
have frorn entiguity (at least since 825 AD) the solution formula x =
{—p+D1-"'3}f2, i terims of the coefficiantz p, g, where D = (eq-u2)}e =
F-E-‘!q, and the two solutions are obtained by taking the two square

voots of O Far the cubic equation x-+px+q =0, vears of toil and some
intrigue led to ths puklication, ky Cardanc in 1545, of tha following

formuls. [Fix (-3004/2, where D = (13- x2320xy=w3)2{xz-n3id =
—4}:3-2'?:13, unnd vary the cube rect to get all three salutions) x =

(1/33{-2Te/2)+(372)(-3DY I/ 23173 - 3p/t(-27q42) + (3/2)0-3Dy1 /21145

For example, in the sguation xe=1 =0, p=0,0a=-1,D=-27, 50 we
get x = (L/3N27/E + 27/2}443 2 {172 « 1/2)1/3 = 11/3, as hoped.

Indeed, for x2-a = 0, we have p = 0, q = -8, D = ~27a<, and hence
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. = (1/3M278/2 + (3/2)(81a2)1/2)1/3 = (1/3){27a)1/3 = al/3
Far x3 - d4x =0, wegetp=-4,g=0,D=* 206, and zo

L = (173 372X -788)1/ 21143 » 12/(3/2)(-768)1/2)173)

(173 [ {(-27BaN /B + 12/{(-27)(64N1/6 ]

(1733 [ 27113« 12741203 10/3) ] = (2/5T N 1173 . 115

= E‘%Iﬁjﬁefiiﬁ‘}. Varying the cube roots gives (4/ /T Weos{n /BN =
(475 WS A2 = 2, H.u“'ﬁ”:ﬂﬂﬁﬂfﬁ}} = (/ST YW-75 F2) = -&, and
fal /% Weos{@n/6)) = {2//5 M) = 0.

Of course, factoring Ao-4% = Au-2¥x+2) = U confirms thess answers.
{Notice s point which fascinated earlier workers, who were net
entirely happy with “imaginary” numbers: the solution formule
involues imaginaries even though the final answer it gives it reall It
can be proved that this cannot be avoided ]

As far at our examples tell us, the formula is sven correctl But we
hewe & different goal in mind, we want to understand what the
existence of such a formula says about expressing the saclutions of &
polvneminl in terms of the coefficients. Looking at the symbols that
are used in the formuls, we se& thres kinds af symbeols in the
farmule, nurnerals steanding for numbers, ths letters p, g for the
comfficients of the polynomisl, and sperational syrnbols standing for
the algekhraic operations, addition, subtraction, multiplication,
divisioni, and the sxiraction of roots or formation of ‘radicals”. If we
want to make s statement that would spply to apy forrmuls anycne
rnight ever come up with, we should concern purselves not with
what the specific numbers are in these lormulas, but rather with
what operations the solutions are formed out of the coefficients,

Specifically, in this formule (-3D)1/2 = {12p3+31q3}1"’3 Qoours,
which means we have taken the arithmeatic cormbination

{12p +8142) of the coefficients, and then taken itz squars root. Then
we have Ip/{(-279/2) + (3/23-3011/ 21143, wrhich shows we have
forrmed the arithmetic combination {{-27qf2) + (3/2)-3D1172),
involving both the caefhcients and that squeare root, and then we



hava taken the cube roct of this expression; end finelly we have
divided by the cube rost. To repeat, to get the solution x1, we have
allowed the operations *, -, -, /, on the coefficients, Then we have
added in one new elermneant, the square root (=3DVL72 and allowed
mrithrnetic gperations on thiz new set of elements. Then we have
edjcined ancther new siement, the cube root

{(-27gfe) ~ (3/23(-3D4 Y2113 and finally we have allowed
arithmetic cperations on this new larger set of elements. Let's try
ta smy this more abstractly, and consequently more simply.

Call the collection of all elerments that can be cbtained from & given
set, using the operations of +, -, -, /, the "field” generated by those
elernents, [More precisely a field iz & set F with two binary
operations +, -, such that (F,+] is an abelian group, (F-(0),+) is an
mbelian group, and multiplication is distrikutive ower addition| 1€ F
denctes any Held let Flw) denote the field generated over F by
“adding in” the new slernent x. Then the formula above says A}
belongs to the fisld formed in the fellowing stages: First form the
fizld F generated over the rationsl numbers by the coefficients of
the palynormial, and lst A be = suitable eltment of F. Then let F1 =
Fial/Z) %e the field generated over F by the square root of A,
Finally, let B ba a suitable slement of F1, and put Fg = F(B1/3) -
the field generated over F1 by mdding in the cube roct of B, Then
the sslution x1 given by the cubic fermula above, liez in Fa.

Thut the field containing the solution was obtained by two
extensions of the field of the coefficients, each extension being mads.
by adjoining s single nth root of an element from the prawvious field.

This suggests the following way to fermulate the statement that a
palynomisl has such a formula for its solutions. If f is & polynomial,
let F be the tield generated by its coefficients, and let K be the field
generated by its solutions. Then there it a formula of the previous
kind for the rootz aof E iff the “solution field" K is contajned in a fisld
whicrh =an be formed in a finite nurnber of steps, starting from F,
mid sueh thet each successive field is formed by adding 1n a root or
"radical” of an elernent of the previsus fisld. le K must ba a subfield
af a field of forrm Fp, where Fg = F, F1 = F{ﬁiﬂrl Y = the field
abtained by adjoining to F & root of an element A} ink, Fz =

F1(az1/r2 ) = the field chtained by adjoining to Fi s root of an
element A7, ete,., Fpn = Fp- 1{51.‘1.-":'“] = the field ohtained by
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ndjoining to Fp-1 a raot of the element Arn, where fApn is in Fp-1. We
will sy that such & tield Fp is & “radical” extension of F.

Thus in order for a polynaornial with rationml coefficients to have a
solation formiula in terrms of radicals, the solutions must he
conteined in a “radicel svtension of Q°7, L&, iIn some subfield of € of
tarm @(alin, pl/m, <1k where a is in @, b is in Glal/n), cis in
Glal/n, plim) ete .

§12) The Galoiz group of » fizld extension: Galcis’ answer to
the problem of existence of solutien formulas for pelynarial
egquations,

Fow that we have posed the problem of exiztence of a solution
forrnula, how can we study it? [.a how can we tell whether n given
field, such as a solution field for m polynomial, is or 13 not contained
in & radicel field extension of another fimld? More generally, when is
an inclusion of fislds KCL possibla? Lets try using the "functorial”
sppreach of changing this question into one we cAn ansWer rmore
ensily. We do know a hit ore about groups than we do about fields,
so mayhe we can change the question into one about groups. 1=
SUppose we concoct a suitable Functor from fields to groups, taking
say F to G(F). Then an inclusion af fislds, KCL will yield =

homornor phism G(K)— G(L) if our functor iz covariapt, or GL)— G(K)
if contravariant. [f morsover either G(K)=— G(L) iz injective, or

GIL}— (K} iz surjective, it would follow that *{EK) divides ®{G(L)}.
But the condition found and exploned by Galeis is rmuch subtler than
these numerical conditions.

Let's sketch briefly the impressive attack that Galeis carried out.

e have sesn a natural construction that associates & group Biji3)
to a set, and we can try something sirnilar, mtsociating the group of
field automorphisms to a given fisld. In order to measurs only the
extension, i.e, the change from the ariginal field to the new fimld, lat'sz
nssociate to & fisld extension kCTK, the "Halois” group GIK/ k) or G LK)
of “relative automorphisms’, ie. those fisld autamorphisms of K that
act us the identity on k.

Hemee to the extension F of & we sssociate the group GQ(F) of those
fi=ld automorphisms of F that are the identity on Q, or that leave O



{pointwise} "fixed”. We rmight hope also thet we could understand
the group G(Fn/Fo) of & sequential hield ex tension consisting of
several stages FpCF1CFz2C....CFn, by understanding each of the
groups G(Fj/Fj-1). Then the group associated to a radical ¢xtension
ke Qlal/N bl/m 14k 11/T) should be understandable step by
step from studying the group of a single extansion like F{al/m),
whears s iz in F. What iz one of these groups? If e=1, and we look nt
the complex roots of xP-1 = 0, we se= they consist of the pointz on
the unit circle {in the complex plane) which have angles (measured
from 2= 1) which are multiples of 360/n degrees. Hence if w denotes
the first of these (after 1], the full s=t of thermn has form w,

we wd, = 1 Morsaver if al/n s pne solution of the equation
x-a, then the full =&t of sghations is wal/n, wzn”“, m3n”n,_....,
whal/n = 4l/Rn Now these zets of solutions look sort nf "eyclic™
nmture, and it might not ke too wild to assurne these groups
GE({F{al/n)) are all cvclic, {although in fact things are not guite that
simple, but almost).

While we are hypothesizing, suppose indeed thet ol] these individual
rmdical extensions have cyelic sutomarphism groups, it should
perhaps mean that the group of the full radical sxtension

Q{n”ﬂ, plfm, 4:1-"'1';..-..-, h1/t] should be “made up” of cyclic
subgroups. le the group of this field should have a sequencs of
subgroups whose guotients are nll cyeliel Be:zt of all, perhaps the
group of m radiesl extension would have n decornpositian series all of
whose simple constituents are of prime order! Zince we know there
are many simple groups which are not of prime order, this would
cmy it is entirely possible for a root field not to ke of the form
malfn, hl.-"'m* elfk 131/7y,  Moreaver if we can show that an
inelusion QCKCL would lead to a surjective hornomorphism

GgiL)— GQ(K), it wauld follow from one of our extra credit problerns
that the sitnple constituents of GRIK) are a subsystern of tho=e of
Gn(ll. Consequently a solution field could not be cantained in a
radical extension unless all the simple constituents of the Galois
group of the solution field are also of prime order. This fact is the
theorem that Galois proved, Since we know the group 55 has as
simple constituents Z2 and AS, only on® of which haazs prime crder, it
would follaw that a solution field with Geloiz group 55 could not he
contmined in a radical extension, and the solutions of the



corresponding polynomial could thus not be expressed by a formula
like those which exist for all pelynomials of degress 2, 3 and 4.

Definition: A finite group G is called “solvable if the simple
constituents of & campesition series for G are all of prime order.

Theorarn{Galais): If the solutions of a palynomial can he expressed
in terms of its coefficients by field operations and radicals, the Gmlois
group of the field generated by the solutions i a sclvable group.

With thiz insight we can indicate alremdy why there is no universal
formula for the salutions of sll fifth degree polynomials. For let

fix) = xBraindeazxI+o3xra4u+a5 be a general Sth degres
polynomnial, ie a palynormial whose caefficients are "variahbles™. 1f we
had & formula for the solutions &1,...83, of this polynorial, in terms
of the coefficients «1,...58, it would mean that the field =xtension
Qicy....05) € Qlag,...n5] would have solvable Gelois group. We can
get a good idem of what this group iz by noticing that one always has
an essy sipression for the coefficients of a polynominl in terms of
the solutions, i#. the opposite preblem to that of finding solution
formulas is masy. For if a1, . a5 are the solations of Hxl=0, 1t means
we can factor fix) = TT{x-aj)} =

% + crlx"‘-r .:2:-:3*-5'3:-:2*1:43*::5. Actually rmmultiplying out this
expression, we see that a5 = Mi-nj) end 1 = Z{-aj}, with a bit
more thought theat o2 = -

alaz + miaZ + alag + A1a5 + 8283 * 6204 ¥ 6285 aJn4t AZag? adAg,
and in general that ojis the sum of all different products forrned
from j of the elements {-mj,..,-a5}. It follows that the coefficients o
are mlways in the field genernted by the solutions, zao thers iz always
an inclusion @{z1,...a5) € Qiai,. .85

Wow suppose we ask what the group of this field =xtension is. le.
what are the automerphisms of the field Ofaq,...a5} which lenwe
fived all elernents of the field Qleo, . .o8)7 Remembering that the
comfficients a1, ..,05 are independent varisbles, it follows: (from the
theary of transcendence degree) that the solutions aj,...a5 are alzo
independent variables. In particular the fisld Qlaj,...a5] just
eonsists of quotients of polynomials in the letters al,.. n5.
Consequently any permutation of those letters changess one



palynomial inte another, and gives & field autemorphism of

Qimi, m5). Moreover by locking mt the farmulas for the #j, you can
sem that permuting the e's does not change any of the o'
Consequently the whole group S5 of permutetions of the a's leaves
the field Q{g1,...05) pointwize fixed, Thus the Galois group of the
extension Q{c{,...a5) € Qlal, . a5) at least contains 35. We will see
later that the group of this field extension cannot have more than 5!
elements, and thus 35 is exactly the Galois group. Consequently
Galois theorern shove implies there can be no universal formula in

radicals that solves all fifth degree polynomials, (nor higher degree
polynornials either).

Of course we have not fully proved any of our speculations, but we
heave identified & number of important guestion: needing answers.
Quastions:

1) What iz tha Galois group of a field sxtension of form Flal/m)? In
particular is it cyelie? solvable? “What about the case s = 17
2YIfF=Fgc F{ € F2 cF3C._Fpn = L, iz a sequence of ficld
extensions, what is the relation between the big Gelois group 4 =
F{L/F) and the intermediate groups GIF;/F;-1) = Gj? [ therea
sequence of normal subgroups of G such that the G; are the
quotients?

%) In particular, given sn inclusion of fields F € K € L, how is G(K/F)
related to G(L/F)? For instance when does an inclusion of fields

F € K L, induce a hormomorphism of groups between GIK/F) aped
GIL/F¥? le. iz the Galoiz group always a functor? If not, for which
field extensions is it a functor?

§13) Review of rings, fields, and p.id’'s such as T and k[X]
To be cornplete we review soms elamentary concepts which are
probably familiar from previcus courses,

A commutative ring (with identity), in thiz course simply called »,
‘ring’, 1= a s=t R with two binary cperations, +, -, "mddition” and
"multiplication”, such that (R,+) is an abelian group, and
multiplication is mssociative, comrnutative, end has an identity.
Multiplication is also distributive over additian.
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Note: In any ring 0x = 0 for every x, ia Ox = (0+Qkx = Ox + Ox, so
subtracting Ox frorm both sides gives 0 = Ox. Thusif 1 =0, then 0 -
Ox = 1x = x, so every slement of the ring is 0. Thus in every ring
except tha trivial ring (0 we have 1 =z 0.

2 is an exampls of 8 {commutative] ring (with identity).

& ring homemerphism iz » map of rings fR—% such that fix+y) =
)+ f{y), for mll v, in B, mnd such that #{1} = 1, where 1 denotes

(both)] the rnultiplicative identities. The "kernsl” of such a map is
kerif) = £1(0) = (x in R : f{w) = D}, Then fis injective PEE ker{F = {0).

An sgmorphisin of rings i3 & homomeorphism with an inverse
hornormerphism, A homomor phism is an isomorphism iff it is both
injective and surjective. An antomeorghism of a ring K iz an
isornorphism of R with itself.

&0 idenl in & ring iz & subgroup for + . which is alsc clesed under
multiplication by all elements of the ring, not just those in the ideal
| =. & mon empty subset ICR is an ideal iff for every %,v, inn 1 we have
-y in I, and for every x iml, and v in R, xy iz in 1. In evary ring R,
poth !0} and R are ideals. R is the enly ideml containing 1, hence an
ideal [ = R iff I contains 1, iff ] contming an invertible elerment {for
rmultiplication). [1f [ contains x, and «1isin R, then 1 = xx"Lisin
], and then for every Yy in R, vl =%isinll _

To repeat, § RioReT iden] pever contming an invertible elernent.

The porne] of a ring homoemarphism iz mlwrays an jdeal m the
darnain. le if fR=—5 is a ring map with ker{f) = {x in R : fix) = O}
we krow from group theory that ker(f) is an additive subgroup, and
for any 2 in R, Hex) = f{2)f(x) = f(z)-0 = O, so zx is in ker(f),

Conversely, wﬂuﬁxm_kunﬂ_ﬁ_mnm_hﬂmﬂm . To
chow this we uze a quotient construction anmlogous to the one for
groups. le, given any ideal | in R, define an equivalence relation by
equating two slaments :#f their difference liss in the ideal. Write R/l
for the set of equivalence classes. The class %] of % iz the additive
caset x+] of all sums {x+y: for all ¥ in 1}, Then we can define (x] + [yl
= {x+y], [x]ly] = [xy), and check this iz well defined and gives R/l &
cormmutative ring structure with i1] as multiplicative identity.



Indesd from group theory we know R/l iz an edditive group with (0]
as sdditive identity. Moreover, if [x1] = [x2], and lv1] = [y¥2), 12.if %2
= x1+g and ¥2 = vivh, with g,h, in [, then x2y2 = »1¥1 *gly1+h) +
xih = w1 + (element of [). Hence [x1y1] = [x2y2], and rmultiplication
is well defined in R/I, by setting Ixllyl = [xyl. Now everything dls= is
ensy to check. In particular, the mep R to R/] teking x to [x] is
ring hemomaorphism with 1 as kernel.

Cor: [f fR-+5 iz & ring map and JC3 is an ideal, then FFH{JCR is an
idmnl since f71(J) is the kernel of the composition R—+5— 5/J.
Notice: In general we will Lry not to consider the triviael ring (0},
but that means we must check whether { = R in each particular
guotient construction R/T.

Exercise #50) Prove, if ICR iz an ideal ahd fR—E iz & ring mep
such that ICker(f), there iz & unigue ring map { R/1—3 tuch that
the composition R—R/1— 35 equals f.

The intersection of any collection of ideals in K 13 again an idenl in R,

If S i= m subset of R, the idenl (3) "generated by” 3, is the interzection

af all idealz of B which contain 3. It is therefore the smallest idesi of
R containing 5, in the sense that for any ideal I, if 3CT then (<1,

Specifically (5} = {all linear camnbinations of form x1¥1* . xmym:
where the x's are in R and the v's are in 8. In particular, if 3 = {y}
contain: only one point, then the idaal generated by v, called »

"orincipel ideal’. has form (v) = Ry = {xv; for all x in BL.

For exampls, for each integer n, the "principal idenl generated by n”
= (n) = {set of ml] integral multiples of nl. The guotisnt ring Z/(n) =

Lp iz the ring of “jntegers mod o~

In fact in 7. ail idesls are principal [Certainly {0} and Z are
orincipal. If n is the smallest positive elernent of a non trivial ideal
[, then dividing any other elernent of 1 by n yield: & non negative
remainder which is alyo in ], hence is zerc. QED]

Exercise #51) If 5 iz a non empty subset of ¥, the ideal (3]
generated by S iz egual to (n), where n = geod of the slernents in 5.



10

Exercite #52) The element [} is inwvertible i Ly ff x s relatively
prime to n, 1e.1ff gedix,nl = 1.

A field is » comrautative ring in which the non zerg slements form
a commutative group under multiplication, in particular they are
ron ernpty set, zo 1 = 0 ina field, which thus has @ two elermnents.
A mmn_ﬂ_ﬁﬂdﬁ it m hernomorphism as rings,

Examples of fields, include Q. R, C; and Zp is a field iff p is prime, {oy
exarcise #52 above].
Ei-f_‘.dﬁ_hvatﬁmmMmmmﬂﬂiﬂw
divisors” and no non trivial ideals:

To cee the only idenls in » field F are tha trivial ones {0} and F, recall
that proper ideals never contain invertible slements. On the other
hand, if R is m ring but not & fisld, and x = 0 is not invertible, then
{x] iz n non triviel idesl, so ) 1 A

poentrivial ideals.

Every ring homomeorphism fF— R where Fisa field and R = {0}, is
injective, le. fi1) = 1 = 0, so ker{f} = F, but the enly other idesl of F
= {0}, and thus { iz injective,

Definition: A “meximal’ ideal in a ring R, is » proper ideal | # R
such that the only ideals J with icJeR mred = 1 and ) = R,

Cor: A guotient ring R/l is » field iff ICR is a maximal ideal,

Dafinition: A "dermain” or "integral domain” is a ring with no 2810
divisors™. i.e. in which xy=0 irnphes emither x = 0 or ¥ = 1.

Every field is o domain, since if Xy = Oend v 0, then 0 = (xyiy1
= x1 = #. Consequently ' : - :

Exercise #53) Every domain iz & subring of a field.

[Hint: Given a non trivial domain R, define F1 = {{s,k} m R=xR, st

L = 0}, and define {a, b) ~ (g, d} in F1 iff ad-be = 0. Thow this is an
equivalence relation, and et F = F1/~, the set of equivealence clazsax.
Drove F is a field, with the cperations (m.b) + [c,d = (ad+be, bd) and
(m, kic, d) = {ac, hd), and F contains a subring isermorphic to R
consisting of the elements {m, 1) for = in R, Replacing (s, I by n
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gives the subring RCF. This field F is celled the "quotient field” or
“field of fractians™ of R]

Exercire #54) Prove the “quotient field of R™, F = gf(R), is the
simallest field containing R, in the senze thet if K i1z any bheld
contmining R, there is an iri jective homomorphism ¢ F— K such that
p 15 the identity on B

Remeark: The definition of @ shows that Q = gi{(Z). Hence every
field containing an isomorphic copy of 2 alto containg Q.

Exercize #55) If R iz any ring, there is & unigue ring map I—~R. A
fisld F iz said to have "charsctieristic zere” iff the unigue ring map
I—F iz injective.

Fxercise #56)/Dafinition: [{ F is a field and the map Z—F 15 not
injective, then ker{f} = (p), for sorne prime p. We zay then that F
haz characteristic g » (.

Exerciza #57)/Definition: [f F is any fiald, tha "prime field" of F 1=
the interzaction of all subfields of F. It is alwayz isormorphic sither to
0 or to some Zp.

Dafinition: 1f & CL is a subset of a field L, then "the subfield of L
genereted by §° is the intersection of all subfields of L which contain
5. If RCL is a subring, the subfield of L gensrated by R is = gf(R).

If FCL is mp inclusion of fields, and 8 €L iz & subset of the Jarger
Field, then F(S) = “the subfield of L gencrated over F by J° iz tha
intersection of all subfields of L which contain bhoth F and 5. This 1s
the srrallest subfield of L which contains the field F and the set 5.

Definition: Another uery important example of a ring, iz the ring
kl¥] of poiy ls in one v ver t jeld k. We can
define thess najvely, by taking the field k and any symbol X not in
the field, and constructing the sat of all finite sxpressions of form
64T + an-1 X" ls  +a1¥ + ap, where the aj are sll in k. Define
multiplication af monomials by (aXR){bXM} = (ab)(XN*H), and
extend that definition to all polynermials by the distributivity and
cormnmutativity laws. We decree that two pelynornials are different
iff they lack different”, e apXdD + ﬂ.nuj_}{n'l*..-.*ai}{ + an = 0 iff all
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the mi are zero, and conseguently apXn + ap-1X0"1+ _+uy1¥ + ap =
By KT+ bep-1XM-1s ebiX + by Hfn=m and for all i, af = k. (To
compare two polynomials with a different number of terms we can
add higher powers of X, with cnefficient zero, to one of them. Te. all
mitsing powers of X are thought of a3 having coefficient zeral kXl
1¢ m cammutative ring with identity. If B is any ring, we can define
R[X] similarly.

The degree of & polynomial is the highest exponent of X OCEUT TINE
with a non gero coefficient, The degres of the 0 polynorial is “Tninus
infinity™. If R is a domain and f,g are pelynomials over R, we have
Deglig) = Deglf) + Deglgl, &0 RI¥] is an integral domein if R is. In
pearticular if k is a field, we can ernbed kIX] in its quatient field.

Definition: If k iz & field, denote the guotient field of kl¥] by k(X),
called the "field of rational furections” of ene variable X, Thuz an
elernent of (X} can be reprﬂsented in the form HX) glX) where f.g
are polynomials in X and g * 0.

Definition: If k is a field, & "k-nlgebra’ is any ring conteining k.
If &, S are both k algebras, & “k-mlgebrs map” R—3 is a ring map
which is the identity mep on k.

The polynornial ring K K| is m free k-algebra’ on one generator, in
the sense of the following exercise

Exercise #58: (i) The construction taking k to k[¥] is = functor
from fields to algebras over fields.

[§i) Given a field k, if R is any k algebra, and « any element of R,
there is & unique k algebra map fX[X}—k such that K¥) = «.

More generaily, we define the polynomnial ring k[X.Y] over k an two
variables X,¥ to be RIY), where R = k(¥], and the polynomisl ring
k[¥1,...Knl on n variables M4, ¥n te be Ri¥pl where R =
kiX31....Xn-1l. Then for any sequence =1, . %pn of elements of a k
algebra 5, there is a unigue k algebra map fki¥1,. . Hnl—* 5 such that
. f{}{j} = o j, for every 1= 1.0 Just ms in the case of the free
abelian group generated by a set, it follows that these polynernial
nlgebras give a “free’ funcior from finite sets to k aigebras.
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Definition: A "principal ideal domainy” or pid. 15 an integral dornain
in which svery ideal is principal. All fields k, the ntegers I, and
kI, are pid’s. |To show ElX]lis 8 pid, imitate the srgument for Z.
l.=, show that an ideal ICk[X] is generated by an element § of
smallest degree In I, since dividing any other slernent of [ by | yields
a rermnainder which is also in I, but of lower degres, hence 2ero)

Remark: The slight difficulty encountered above in comparing two
polynominls of different degrees, reveal: that a careful definition of
polynomials will edrnit the fact that terms of sll orders are present,
but that moest of thern have coefficient zeto. A more precise
definition of the palynemials in kIX} would be az infinite sequances
(ap) = (ag, a1, a2...) of elements of k, such that each sequence has
only & hnite nurnber of non zero terms. Then one defines addition
term by term, and rnultiplication by a rule that locks sxactly like
multiplication of palyneomials. le the k~th term in the product of
(mn){bm) is the sum of all products of form mghy where sttt = k.
Thus (an)-ibpn) = (apbno, eobi+*aibo, aobztalbinzbi. ...

There are also irmportant non cormnmutative rings in nature, such as
rings of metrices, but we will leave their study until later,

£14) Continuntion of review of divisibility in I, k[X]:
Lernma; The greatest commoen divisor of two intesgers abh can be
written in the form an+tkbm for =ome n,m.

proof: The ideal (a.b) = {Aan+bm: for all nm} = (d) where d is the
godia,bl, by exercise #37, Hence d & an+brn, for soms n,m. QED.

Definition: An element % of T iz jrreducible iff x = 0.1 -1, and
whenever x = ab, for a,b in £, then sither a or b equals 1 or ~1.

Car: If p is an irreducible integer and if p divides ab, then either p
divides s or p divides b.

praof: If p doas not divide a then gedim,p} = 1, 50 we can write 1 =
np+me, for same nam in £ Multiplving by b give: b = bnprbma.
Motica that p divides the right hand side of this, since p divides ab.
Rence p also divides the left hand side, ie. p divides b. QED.
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Definition: The invertible integers 1, -1 are called units.

Cor{Unigue facterization of integers). If n iz an integer, neither
zero nor a unit, then o can be written az s (finite) product of
irreducible integers n = Tpj. Moreover, if Mlgj = n = Mpi, whers all
Pi. 4j are irreducible, then there are the seme number of p's and q's,
and after possibly renumbering the indices of the q's, we have p; =

gj or -di, for every 1.

proaf: [sketeh]. Existence of a factorization is essy by induction, [e.
if rnis self irreducible we hawve a factorizgation into one factor, n
itself. IFf n iz net irreducible, then n = ab where n,b are smaller than
n, hence by induction sach of them hasz a factarizmtion into
irreducibles, Multiplying those two factorizations together givezr a
factorigation of . For uniguensss, we use the previous corollary.

le if Mgy = TTp . then gy divndes the left henee slso the right. Since
o1 iz irreducible apnd divides the product of the pi, it rmust divide ona
of thern. Since all pj are irreducikle, the ope divisible by g1 must
equal either g3 or ~g1. Then we can cancel gj from both zidez, New
vwe are done by inductien., = wa have an sgqustion betwesn two
stiyaller praducts of irreducibles, so they must consist of the zame
factorz, up ta ordering and sign. QED.

The zarne argument just uzed for unigqueness proves al:o!

Cor: For n,m any two integers, n divides mm iff every irreducible
factor p of n appesrs also as an Irreducible factor of m, and the
exponent of p as a factar of m is at least as larpe as its exponent as
a factor of n.

Cor: The god of two integers n, tn can be found as follows from their
prime factorizations: facter koth n, m into irreducible factors. For
ench irreducible factor p of bath n, m raise p ta tha smaller of it
twn exponents, ie of that sccurring in the factorization of n, and
that accurring in the factorization of m. Multiplying all theza
powers of the factors together giver the goed of n, m. For example
ged(23s47, 2593 52779 = 23537,

Cor: A rational number n/m can ke reduced to lowest terms’ in e
unigus way, up to multiplying by minus signs.

proof: Factor both n, m into irreducible factors, and cancel like
factors from top and bottern. QED.
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Cor: /2 is irretional.

proof: We can write any rational squere root of 2 as a/b in lowest
form. Then si/k€ = 2/1, is alto in lowest form, and by unigqueness
then B2 = 1, and a2 = 2, $0 2 is an integral square root of 2. But 12
£ 2 22 = 4, and all other integers have still larger squares, so there

is np integral sguare root of 2. Hence there is no rational square
root of 2 either, QED.

Sirmilar argumsnts show /3 is irretional, and J/n is irrational,
whenever n it not & sguare of an integer.

Since these divisibility arguments for 2 used only that Z it a pid,
analogous arguments go through for the ring kiX], as follows:

Definition: In & ring R, god{a,b) = 5 iff = divides both a, b and any
ather cernrnon divisor of &, b divides ¢ |godiah) need not exist]

Lerama: The greatest common divisor of twe polynomiels f, g in kIl
awists, and cean be written in the form fhegr for some b, r in kXL
proof: The ideal {f,g} = {fh+gr: for all hr in kXt = (5] for some = in
k[¥]. Thus f,g are both multiples of 5, and also « = fh+gr, for mll h,r
in k{¥l. Hence a polynornial that divides {.g also divides 5. QED.

Definiticn:' An element f af k(X iz irreducible iff f is not in k, and
whenever { = gh, for g.h in k[X®], then sither gor h iz in k.

Cor: 1f f iz irreducible and f divides gh, then either { divides g or
divides h.

proot: If f does not divide g then godif,g) = 1, so we can write 1 =
fr+gs, far tome r.s in k[X|. Multiplying by h gives h = hir+hgs. Since
p divides gh £ divides the right hand side of this, hence f alzo divides
the latt hand side, ie. f divides h. QED.

Definition: The mvertible polynomials, thase in k-{0}, are called
units,

CorlUnique factorization of polynomialsi: If fis in kX, but not
in k, then f can be written as a (finite) product of irreducible
polynomials f = T, Moreaver, if TTl = £ = Tigj- where ali fi, gj are
irreducible thap there ars the same nurnber of f; and Ej- and after
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possibly renumbering the indices of the gj, we have §j = cig, for
every 1, where ¢ iz unit,

proct: [sketch]. Existence: 1§ f iz itself irreducible we are done If
nat, f = gh where g.h have sronller degree than f hence by
induction each of them has & factorization into irreducibles.
Multiplying those tWwo factorigstions together gives a factorization of
f For unigueness, we use the previous corollary. le if T = Tlgj,
vhan f1 divides the left hence also the right. Since i1 is irreducible
and divides the product of the g, it rnust divide one of thern, Since
all gj are irreducible, the one divisihle by f1 must equal c1f] for
semne &1 in k={0}, Then we can carncel f1 from both sides. HNow we
are done by induction. le. we have an equation betwesn two
stnaller products of irreducibles, so they must conszist of the same
factors, up ta ordering and unit facters. QED.

Cor: 1f k iz a field, then k[¥X]/(f) iz & field iff f iz mn irreducible
polynomial.

proof: 1f [ is irreducible, then any ideal 1 such thet (HClcklX] must
equal T = (g}, where g divides £, Zince { iz irreducible, ¢ither g = cf
for c in k-10), or g = < in k-{0]. In the first caze (g) = {fim, and in
the second (g) = kiX]. Thus (£} is maximal, and k[¥/(f} is a field.

1f f is reducible, say f = gh where g.h have lower degrsa than f, then
(glikl = [O) in k[X]/LE), but neither [gl, nor [kl is 2ero, so the gquotisnt
ring is not an integral dofnain, hence not a field, 1f f is & unit, then
(0 = {1} = kIX] and the guotisnt i3 0, o not & field, If f iy 2ero then .
the quotient is kIX], not a field, qQED.

Recall frorm high schoel the ussful

Remuainder theorem: If f is & palynomisl over a field k, and & 15 1n
k, then fX) = gld)X-c} » flc), for some polynornial glX].

proof: After dividing #¥) by (¥-c) the remainder has degres lzss
thap (¥-cl. ie less than one, hence belongs to k. So wa have

#X) = g{XH¥-c) + r whers risin k. Substituting ¥ = o gives r = flc).
QED.

Cor{Root/Factor theorem}: An element c af a field k iz a root of &
palynormial f in k[%] iff (X-c) is & factor of fIn AR
proof: The remainder after division of f(3) by {(X-c, is f{c). QED.

Cor: A palynomial f = 0 in k[X}, has st rmost deglf) roots in k.
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procf: This is true if deg{f) = 1, since a{X-r) has only r as a root. If
deglfl = n. and r is a root of f, then #{X]) = g{X}X-r), whare deglg} =
n-1. But since k is & demain, flc}zglclic-T) = 0 implies either c= 1
or gle) = 0, and by induction g has at most n-1 roots. QED.

Cor: A polynomisl of degre= 2 or 3 with ne roots in k is irreducible
auer k.

proof: Any non trivial fsctorization would involve a factor of degree
one, which must have & reot. QED.

In particular, %¥Z+1 is irreducible over R, as is X¢+c for every ¢ > 0.

IMoreover, sines we know 21-""3, 31/2 pre irrational, then X2-2, X2-3
are irreducible aver §. The following thearam shows many other
specific polynomialz: have no rational roots,

Bationml Raot Theoram: If tha cosfficients of f{H) = apXh+  +ap
are integers, the only possible reticonal roots of f are the rational
rnumbkers: of farm e/d, where ¢ is a foctor of ap) and d a factor of ap.
proot: Assume c¢/d is in lowesst form, is. ¢, d heve no cornmon
fmctors, set f{e/d) = 0, mnd rmultiply threough by dB. This gives

0 = apeft dnn—lcn'l * dzan-gcn‘z . +dn'1n1:: + diiap. Putting
the first term on the other zide of the equation, give: -mpeD

= dap-1c071 » dZan-zanitZ « _+dP"laje « dNag, so that d divides
the right hence the left side, hence d divides the product apchl But
since ¢, d are relatively prims, none of the prirme factors of d cccurs
in ¢0. Hence all prime power factors of d oecur in ap, ie. d divides
apn. On the other hand if we put the last terin dPaf on one side by
itself we conclude similarly that c divides ap, QED.

Terminelegy: A "monic" polynominl is & polynomial with leading
coefficient = one,

Cor: The only possible rational roots of a "monic” polynomial with
integer coefficients are the integer factors of the canstant term,

Cor: X+-2 heas no raticnal roots, hence 21-"’3 iz irrational, and KI-2 is
irreducible over 0.

proof: The only possible raticnal roots are the integers 1.-1.2,-2, but
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those do not work, Since any factorization of & cubic would have a
linear factor, & Q-facterization would lead to & rational root, QED.

Cor: If & it an integer but not the nth power of an integer, then
al/Th is irrational. If m is an integer but not & cube of an Integer,

then ¥XJ-a is irreducible over €.
procf: The same proof works mgnin. QED.

Cor: The guotient rings QIX1/{1+ %2}, and QIXIY(K3-2) are fields.
procf: Irreducible polynomials generate maximal idemls. QED,

wWe have need alto for the elementary theory of dimension of vector
spaces S0 wa review it next.

§15) Digression on dimension of vector spacel over fields.

Definition: A "vector space’ ower the field k, 1% an abelian group
[V +) together with & way to multiply elements of V by slements af
k. zuch that if x,v ara in k, and v w are in YV then [x+yiv = wwsyy,
lv = v, xluew) = dvexw, and (kv = x{yv).

Remerks: A guick way to summarize these ax ipms iz to say there
it & ring map k—+End(V] = Hom(V,¥), from k into the {(non
cormmutative) ring of “endornorphisms; of Y, im. additive
hemornarphisrms from ¥V to itself, [Recall that Hom{V,V) iz a
commutativa abelian group under +, whire (f+pdx) = fix)rgin), with
additive identity ihe constant Z8T0 homemorphizm, and where
multiplication is composition, 1.&. (fgix) = flglx)). The identity map iz
hence the multiplicativa identity, but commposition is not
commutative., Since k is commutative however, the image of k in
Epd(Y) consists of hornemorphisms that commute with smch other.
1t follows too that ot svery abelinn group ¥V can be & vector space
ower k. since unless ¥ = {0} there must be an isornorphic copy of the
field k inside the ring End(Y). For exeample if V 2 {0} i finite, and k
is infinite there is no way this can happen. lndeed, it turns cut that
the only groups which can be "finite dirnensional” vector spaces over
k, are isornorphic to the product groups kxkx ..xk [products of copies
of the additive group (k,+].
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Definition: & g-homomeorphisin of vector spaces fV =W 15 a map
such that flwew) = Hul + f{w), for all vywin ¥V, and such that flxu) =
xf{v), for mll x in k, v in V.

Exercise: A k homomaorghisin f¥— W iz an izsomaorphism, ie heas an
inverse k- homomeorphism, if and enly if f iz bijective.

The essential concept is that of “lipear combinstion”.

Definition: 1f ¥V is & k vector space, and SCV is s subset, a "linear
cormbination” of elernents of 3 iz & finite expression of form Zajxj,
where the a's are in k and the x's are in S. A "non trivial” linear

comkbination is one in which at least one of the 44 i non zero.

Definition: If ¥ iz & k vector space, an element x of V "depends on”
the subset 8€V iff ¥ equals & linear combination of slements of 3.
Sometimes it is convenient to say the vector 0 depends on the
empty set.

Definition: A set SCV is "(linearly) dependent” iff the vector 0 iz a
non trivial linesar cornbination of elernents of 5, i sorne vector in =
depends on the other vectors in 3. Far example if 5 containe 0, then
3 is dependent, An indexed systern 5 = {wj] of vectors in W, where
vectars with different indices nead not be different, is dependent iff
D can be written as a finite linear combination of ferm Ljmjw;and
sorne mj I= ran 2erg, Hence if sorme vestor occurs more than oncs in
such a systemn, the systern iz depandent,

4 z=t or system i3 "(linearly) independent” iff it is not dependent, ifE
the only way to write zero as a finite linear combination of the
vectors in the set or the system is for all coefficients to be zers, iff
ne vector in the set or system can be written as a hnear
combination of the others.

Definitions: (i) The “(k-)dimensicn” of a k vector space V is the
maximal number of elements in an independent subset of V.
{ii] A subset SCV “spans” V iff every vector in V depends on S
(i) & "basis’ of V it an independent subset that spans V.

The follawing Lermma is the main technical result on dimension:
Main Lamma:-[f 5 = {x1, ..%n! is an independent set in ¥, and T =
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lv1....¥m) is 8 set of vectars in ¥ each of which depends on 5, where
m > n, then T is a dependent set,

proof: [from Brauer's Galois Theory notes: by induction on n)

[fn =1, thenm * 2, 30 we have at lemst w1 = a1x4, end ¥2 = bixi.
cese i) [f a1 = 0, then y1 =0, 50 T is & dependent set, since 0 = 1-vq
= 1.0, is & non trivial combination of elermnents of T, (non trivial sines
the first caefficient iz 1, nat zero).

coze ii) If a1 2 0, then x1 = {1/agdy1. Thus y2 = bixi = (lpy/aihv,
thus T is dependent, sincea 0 = ¥ ~ {b1/aq1)v] =xpresses 0 ns & non
triviel linesr combination of elements of T (the cosfficient of ¥2 is 1).
If mn ¢ 2, we do the same thing, i.e. solve for one of the x's in terms
of v4 and the other 2's. then we write the other vz in terms of 1
and the cther x's end use inductions. Rether than give a general
proof, we illustrate it for n = 4, mzsuming we have provad the

thearem for 1 = 3. Then there are 4 or mora y's, but we only need
4 of thern.

[ zay we have

w] = alxiteaziztaidl,
vz = b1x1+bZn2 b33,
W = ol Iro2NZFCING,
vg = dix1+d2uz+d3Ix3.

casm it all &'y =0, Then ¥1=0, and T iz dependent.

cnze i) sorne a = O, renumber until a1=0.

Then aixi= y1-azxz2-n3x]}, o X1 = (1/m1)yy —(az/a1)xz-(a3/a1)x3.
Maow if we substitute this for ¥1 in esch of the three equations for
V2. v3i.v4, we gat axpressions which inveolve only ¥i.X2.X3. LB 547
w2 = r1yitrZxkzrrixg

W3 = s1VATSEXZAEINT

w4 = L1V L+tZNZLINT.

Now put the y1 terms over on the left, to get
Y2 - TiV1 = F2xZ*rIX3
¥3 - 81yl = $2RIVI3KT
w4 - 1Yl = t2x2rb3xd.

i1

Here we have three vectors, the three on the left hand sides of thess
equations, y2 - riyl, ¥3 - $1¥1l, and v4 -~ tivi, depending on the
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two independent vectors x2, x3. Thus the inductive hypothesis
appliss and we conclude that the three vectors on the left are
dependent. Thus for some elements ¥2, ¥3, ¥4 of k, not all zera, we
have 0 = ¥2iyz - r1vil + 13ly3 - zpvil + 14lva - £1v1). Collecting
the v1 terms gives 0 = ¥1y1 + ¥2y2 * ¥y + ¥4v4 [where ¥1 =

-¥2 r1 - ¥3s1 - ¥4 t1]. This is & non trivial linemr combination since
rot all of ¥2, ¥, ¥4, are zero, Hence T is dependent. QED.

Cor-1f 8 = [x1,..%Xn! is & basis for & subspace of ¥, then that
subspace has dimension n.

The larmma shove l=nds easily to the follawing properties
Definition: A "subspace” of ¥ is & subset which is slsoc a vector
space under the same operaticns as i V.

Theorem: 1f ¥V has dimension n, then:

i} raore than n vectors in ¥V are slways dependent,

jil fewer than n vectors cannot span ¥,

iii) every basis of V has exactly n vectars,

iw) mvery set of n independent vectors in V spans V, hence is a basis;
v} every set of n vectors that spans V i3 independent, hence a basis;
wi) every maeximal set of independent wvectors in V has exactly n
vectors in 1%

vii) every minimal set of spanning vectors for ¥V hes sxactly n
vectors in ik; .

viii) every independent subset of V is conitained in a basis,

ix) every spanning set for ¥V contain: & basiy;

x} m subspsce of ¥ cannot have dimension greater than n;

xi) & praper subspace of V has dimension less than n;

xii) & k-isomorphism fV—= W carries a bazis of ¥V to a baxiz of W,
hence W alsc has dimension n,

[Broofs of viii), ix) seern to require the axiorn of choice]

Advice: You should Be able to prove all of these staternents.

Dernark: All vectar spaces are sxamples of » "iree’ conistruction. le
s vector space ¥V iz “free” on the set 5 iff i) 53¢V, and ii) for any
vectar space W, every function £5-—+% axtends unigquely to a k-
homornarphism V=W,
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Exercise #59) V is “free” on JCV {ff 3 is & basis for V.

Rernark: Every k-algebra is a k-vectar space. In particular, if kCX
is an extension of fields, then K iz & k slgebra and therefore also a k-
vector space.

Definition: The k dimensien of K iz called the gegree of the
extension and denoted [KXi

Theorem: Given kCKCL, the degree of successive extensions is
multiplicative, is. [Lk] = [LKIKk]

proof: Aszume x1,..%n BIe r-independent slements of K, and

41, vm are K-independent elernents of L.

Claimn 1: The preducts {x{yj} =re k-independent slements of L.
procf of clairn 1:1F Zajjxiy; = 0 jin L, we must show all ajj = 0.
Lewriting the sum we have Ej(Eieijxilyj = 0. But the yvj are K -
independent, and the coefficients (Limijxi) belong to K, so these
coefficients are all zera. Then Eiajjxj = 0, the 4 ere k -independent,
while the ajj are all in k, 30 all &jj = 2,

Assume x1,..xn 6re elements of K which span K over k, and
1,...Yrn &re elements of L which span L ouvsr K.

Clairn 2: The products 4%yl span L over k.

proof of clairn 2:If z iz in L then = = Zjbjyj for zothe bj in K.
Then each bj = Li ajjxj far some ai] in k. Thus z = LjlLimindy] =
Tij mijlxiyi). GED theorem. '

fBemarks' (i) Thiz proves also that [Lk] is infinite off one of the
degrees [LH] or [KX] is infinite, since if there nre arbitrarily many
independent x's or ¥'s, we have proved there are mlso arbitrarily
many independent products xy.

(i) The k-dimension of an extension kCK will be very useful in
understanding the extenzion, s we will e in the next section.

§16) Theory of nlgshraic fisld sxtansions

Definition: & field extension k<K is calied "algebraic” prowvided
evary element of K satisfies a polynomial equation x)=0, where §
has cosfficisnts in k. More generally an slament of K iz called
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algebraic over k iff it entisfies such a polynomisl, and then K is
algebraic over k iff every element of K is algebraic over k. An
slernent of k which is not algebraic over k is called "transcendental”
over k.

Exatnples: The elernent 21/3 of R is elgebraic over Q since it
smtizfies the polynomiel ¥3-2 with rationel coefficients, Indesd if & 15
any slernent of Q, then any eornplex nth root nl/T of p is algebraic
over &, since it satisfies XD-a=0. It is ot 30 sasy to prove, but the
element 7 of R is transcendsntal over Q.

If you know abeut the theory of eountabls and uncountable sats, it
is not very heard to show that the set of all elernents of B which are
algebraic over Q is countable. [Feor each n, thers are only sountakbly
meny polynomisls of degres n over €, =ach with at most n roots,
hence only countably meny roots of polynomials of degree n. The
unien over all i, is m countable wnion of countahble zetz hence
countable] Zince B is uncountable, there sre uncountably infinitely
many trenscendental slements of ¥ over Q, but the hard part iz to
recognide one.

If L is B field contmining k[X], such as the field of rational functions of
X, then X is not algebraic over k, since a polynomial f(X} is never
equal to zero uniess all the coefficients are zera, It follows that the
mag QIX]—~ R sending X to 7, and KX) to fin), is an isormorphism
from Q[X] ento the O-sub slgebra of R generatad by w. le the ring
of polynomials in 7 over €, it isomorphic te the ring of pelynomials
in X over QI

Dafinition/ Theorem: If = in K iz alpgebraic over kCK, then there 1%
e unigue monie irreducible polynomisl over k satisfied by <, called
the "rinimal polynomial of « over k. This is the unique monic
polynominl of least degree satisfied by « over k.

proof. Consider the k algebra map @ kIXl—+K sending X to «, and
thus f%) to fla). Since « iz algehraic, some non trivial f goes to zerc
by this map, hence ker{g)=0. Thus ker(p) = (£} is = principal ideal
generated by some unigue rRonic f. Moreaver K[X1/(f} = ImiplCK is
s subring of & field hence an integral domain. Thus the product of
two non zera elernsnts of k[X]1/(f) is again non zero. Since Igl = (O] iff
f divides g, this means that if f divides neither g nor h in KX}, then €
doss not divide gh sithar. Consegquently f is irrpducible, since if f =
gh then f divides f=gh, so { divides either g or h. Thus wither h or g
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iz m unit, and {15 irreducible. QED,

Cor: 1f = in K iz slgebraic over k€K, then kix) = k[X]/(H) (isomorphic
as k-algebras) where f is the minirnal polynomisl of « over k.

proof: We just sew that the k slgebra map ¢ kKI~ K induces an
isormorphism k[XIAE) = Imle) = w]C K, of kiXI/(F) onto the k algebrs
k[a] of all polynomials in o« Jince K K)/(D is a feld, so iz klz], 1.6, the
ring kle] = kim) iz already & field, the subfield of ¥ generated by .
QED.

Lernrna: If f in ki¥] has degree n, then the vectar space k[XI/(f) has
k-dirmension n.

proof: Any pelynomial gl¥) in k[X] can be divided by { to leatre &
rermainder of degree ¢ n, ie g = th + ¢ for same of degree ¢ n. Then
im k[X1£08), [g) = el = [aps @1X ~ ....-nn-1}{“‘11, tc the 1 elernants (1],
(%1, I¥mn1), span the space KiXI/ () over k. Morssver they are
independent, since if ] = mpll]s m1[X) T TR beruk B

(ap+ 13X + -..+un-:|_}{n'1], then f divides ag+ niX + ....+an-1}{n“1,
which is irnpossible since degree(f) = n. QED.

Cor' 1f « in K is aigebraic over kT K, with minimal polynommial f over
k of degree n, then ki) has k-dirnension n.

proof: The somorphism ki) & KiXIZE is one of k-nlgebras [ie. a
ring isom. which is the identity on k], hence alsg of k-vector spaces.
The slerments 1, o, w2, xh ) thus form a k-basziz of k{e«). QED.

Rermnark: It 15 not hard to shaw that Q(/T} = la+bsZ, for b, in O,
Q( /3 = {a+hS/T), for ab, in QL Q(i) = {aebi, for a b, in O, are fields
directly by "rationalizing" and thus writing down inverses of their
elements. Far exarmple, if a kb, are rational kut not both zero,
(msbil~1 = (a-ki)/aZ+b2), (avhs/2)" 2 = (m-b T}/ a-2b¢, whers in the
first cmze the denominatar iz positive, and in the second i3 non 2erc
since 2 has no rational syueare root,

To thaw directly that G2l = lm+ B2 s 2273, where a,b,c, are
in Q) is a field, one can sclve some linear equations for the inverse

formula (a + b 213 + ¢ z2/3y1 =
(taZ-2bc) » 2173 (2c2-ab) + 2273 (b2-ac)t / (ad+2bi+4cT-Gabel, but
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thiz 15 not & proof that the slement is invertible unless we prove
that this dencminator is nen 2ero. Here is a2 proof by Hen Berenheut
by the "method of descent' [take & minimal answer and make it

srrmller]. So mssurne there is, 2 sclution of (a9+2h3+d4c?-6abc) = 1,
with s, b, ¢ rational, not all zero. By multiplying through by a
large integer. ane can assume the solutions ars all integers, and then
by dividing out their ged, one can assume the ged of m, b, c iz 1. The
trick row is to show that all of thern are even, a contradiction.
Looking at the eguationn we zea all terms but n° are even, hence a2
iz even, hence a iz even, hencs ad iz actually divizible by 8. Looking
spain now wWe zes that all terms but 2b3 are divisible by 4, hence so
it this one, 5o b- is even, hence b is even, hence 2k° is divisible by
if. Hence evary term but 4c® is divisible v B, 302 ¢ iz mven and ¢ is
even. Thus e b.c, are all aven, s contradiction. Henes ocur formuls
has: mon zero deanominator unless all three of a,b.c, are zero. QED.
I¥ou might try finding inversss of slements of QieZ i/ directly]

Lermnma: k[(X] hes infinite dimention over k.
proof: For any n, the elements 1, X, ... XD, are independent over k,
since a linear combination a0+ a1X + _*an-1 XM canneot be zera in

k|¥] unlezs mll &'z ar= zmro, by definition of squality of polynominais,
QED.

The MAIN POINT for proving an extension is algebraic:

Cor: Given kCK end « in ¥, « is algebraic pver k iff k{«) has finite
dirnension over k.

proof; We know « is algebraic over k iff {x) = 0 for some non
trivial polvnomial f over k, hence iff the meap ¢ klX1—= K sending f{X)
to fie) has non trivial kernel. But Imnip) Cki«) by construction, se if
ki) is finite dimensionel, than since kIX] is infinite dimensional, the
rmap ¢ cannot be injective. We have already seen above that if « iz
algebraic with minimal polynomial {, then kia} has (finite)
dimension = degres(f). QED.

Definition: 4 field axtension kCK is called finitely generated/k iff K
= k{wq. .opnl, 12 K is generated over k by a finite set

Thecrern: kCK is finite dimensional, or sirnply "finite’, iff K is both
algebraic and finitely generated k.
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proof: If K is finite dimensionsl, and « 15 any elerment of ¥, then, as
above the map ¢ k[X]l— K sending f{3) to fla) is never injective since
k[¥] iz infinite dimensional. Hence every o iz algebraic over k.
Mareover, if we chooss any elerment « in K-k, and adjoin it to k,
then k{x) has k-dimension ¢ 2. If kl«)=K then cheose another
elerment B in K-k{«), and edjoin B to kic) getting kiee p). Since
kl{ee)Ckle p) is w proper subspace, dim . k(e < dirn. Kkl p).

Proceeding in this fashion, we eventually get ko ,B,...Y)CK end dim.
k(e B, 102 dim. K. Then the dimension: rmust bs equal, and hence
k(ax,p,...50=K. Thus K is slse finitaly generated over k.

1f on the other hend, K is finitely generated and algebraic over k,
then kix B, ¥} = K, where each element o B,..,¥ iz mlgebraic owver k.
Herce we have & tower of extensions kS k{a)CkiaWp)C Ck{s b H{)
- K. Each intermediate field iz finite dimensional cuer the previous
onie, 50 the degree of the top cne over the hottemn one i the product
of the intermediate degrees, hence finite, QED,

Definition: If kCK, and « ig in ¥, the k-subalgebra generated by o
in K is by definition the image of the map k[X]-+ ¥ taking f{X) to fla).

Important remark: Finitely generated extensions are not finite
dirnensional if they are not algebraic. e If o an K is transcendental
over k, then o gensrates an infinite dimensional k subalgebra;

K > kix) = kIX). On the other hand, even an algebraic extension i
not firute dimensional if it is not finitely generated. Eg. if Q denotes
the set of all complex numbers algebraic over Q, then Q< Qis
mlgebraic, but infinite dimensional. Thus in order to use the previcus
corollary for proving sn infinite extension is algebraic, one must
reduce somehow to considering finitely generated subektensions.

\e seill onl  or Galsi { fini .

Definition: If kCK is m "finite"”, i, hnite dimeansional, extension of
fields, define its Galois group GiK) = &K/ k) = Ealpl{K) = {all fi=ld
autornorphismms of K which restrict to the identity on kl = the s#t of
“k-mutomorphisms” of K, with composition as group opetAtion.

Ramnark: [f K, L are finite extensions of k and fE—L iz n field
sutarmaorphism which is the identity on k then [is wlze & k-vector
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space isomorphism, hence [Kk] = [Lk]. In perticuler, GrlKl iz =
subgroup of the group of k-vactoar space rutcrnorphisms of K,

§17) Exmmples of algebraic fisld extensions

Example: The extension ECC iz finite, hence algebraic.

proot: Since € is spanned over R by the two elements {1,i}, C is two
dimensional over B hence algebraic. But wa can also easily find
polynamials satisfled over R by any given glermnents of C as follows.

1f 2 = athi is eny complsk number, then 22 = aZ+be is renl, and z + E
- Za is real, so g is & root of the real polynamial (x-z¥x-2) =

x2 - Zmx+i{m2+bZ}. Hence [ iz algebraic over R. QED.

The previous argument suggests that camplex con jupation plays an
impertant role in understanding the sxtension ReC, One reason for
this iz the following result!

Theorem: The Galois group of RCT, iz AL/R) = {id, 2—Z} = I3.
proof: The ranep 2— T , complex conjugation, iz an R-automorphizm
of €, i.e. it preserves addition, multiplication, leaves the reals fixed,
and iz its own inverze, So it does belang to the Galois group. But
why are there no othar elernents? Recall the slementeary result:

Fact: If flx} is m polynomial with resl coefficients, and if 21z »
cornplex “root” af f lie. a solutian of f(x) = D), then Z is alsa a root.
proof: If H{x) = £ ajx], and 0 = Hz) = Z ajzd, then ¢ = 0 = (Z ajzd)
= L ajz) = #{E), Hence E is also & root. QED.

The proof of the Fact slso provas the theorem. le. let ¢ ke any L34
mutarporphism of €. The argument just piven shows that if z is &
roct of m polynomial with real cosfficients, then plz) is also a root.
le. 0 = flz) = £ ajal, 500 = ¢(0) = (L ajzl) = & mjplz)]. Applying this
Fact to the palynomial xe+1, we see, since the only complex roots of
x2+1 are {i, -i}, that if p is any R sutornerphizm «f C then we must
have sither gfi) = i, or @{i) = -1. Since every element of € has form
a+hi, with a, b real, then piat+bi} = wrbpli) and hence g iz one of the
two autornorphisms {id, =— 2. QED.

Cor; Exactly the sarmne proof shows GQ)/Q) % Z2.
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The principle we have encountered here is so important we state ik
Theorem: Lf kCK s 2 field extension, = is & ragt in K of a polynormisl
[ with coefficients in k, and @ iz an slement of GrlK), then glal it
also m root of fin K.

Procf; We know this proof by niowW. QED.

Theorem: GIQ(/2)/Q) & Z3.

proof: We can try ta imitate the previcus nrgument.

| =, Since (/L) = farbJ/Z, for g b rationall, if ¢ 13 in a{Q{./Z2)/ Q) then
glms b/} = plm) + i lhplS2) = a+bplJ 2}, s0 y I8 determined by o{J/Z).
Next, since /Z iz a roat of %2-2, ¢{J/Z) must nlto be a root of that
polynemial. Hence we ust have (/) = /2 or -v2Z. Thus thers are
at most two O autormnorphisms of QiJT). We claim there are two ok
thern. narnely the identity taking ST to 2, and the map taking
a+bs/Z to a-b/Z, 5o we rnust check the latter is an atommor phism,
It preserves addition since if plmeb/D) = a-b/2, and wiord I} =
cmdsT then pi{a+bJI) * {eed TN = gllarc) + {bed) S =

(m+c) - (b+d)/T = (m-bv/Z ) * {c-d/2) = plarbJ/2) + ple+ds2).

I+ alsa preserves multiplication since pllatb e d/Th =

pllac+2hd) + {ad+be)/Z) = {merZhd) - (md+kc)s2) = {a-bs/THe-dS2) =
pla+rp/L] ple+ds/Z). QED.

¥ cour=e Q(/2) = {m+DJT, for a,b rationeall has dirnension 2 over O,
hence is slgebraic, but suppose We jook for polynominals satizfied by
elements of the field Gl T}, We might as wall try to imitete the
Construction used for € over B 1s let 2 = a+b/Z, for ab rational, be
a given elerment of QiS22 let 2% = a-pfZ, and notice that s = 2@,
and 22* = nzrzhz, are bath in Q. Hence = satisfies the pn]ynuminl
(K-z)(¥-2*) = ¥& -2aX + (aZ-2b2), which has coefficients in Q.

aiemilarly, the Galolz group of QTG s isommerphic to 72, generated
by B conjugaticn automeorphisrn taking a+bsT to m-bSF, and the
carmna trick works to find explicit polynomials smtisfied by elernents of
Ql/T) over Q.

Remark: Since all thres fimlds Q[/2), QLS (i), heve isomorphic
Gelois groups, it 1s conceivable that they are mctually isomorphic
fields, but this iz in fart not the case,
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Proposition: Ne two of Qi/2), Ql/3), (i), are jsomorphic over Q.
proot: Le. suppose £ QI/I) 2 Q(/3) were & Q isomorphisrm. Since
(/e = 2, then malso (/TN = f2) = 2. So /) = a+b{/3) must be a
squere root of 2. However if {a+bl/312 = (ade3b2) + 2abVT = 2,
thep Zaks/T = 2 -(a2+3b2) is a rational number. Since A3 is
wrrational, the only wey 2ak/3 can be rational is if 2ab = 0. Hence
sither m or b is zero, But than we must have sither a2 = 2, or
sh2-2. We know a2 = 2 is imposzible since JZ ig irrational, and if
3p2=2, then bZ = [2/3). This is also impossible, since for example if b
- n/mm 15 rational in lowest terms, then be = ni/me iz also in lowest
terms, so if b2 = néfmé = 2/3, then by uniquensss of & lowest terms

expression, we have nZ = 2, and mZ=3, where n,m are integers But
bhoth equations are impossible.

A sirnilar argurnent shows neither field is isomeorphic to O{i). You
should carry out at lemst one of these arguments. QED.

Naw consider 0(21/3) = {a + B2l/3 4 e-2243. akb.cin Q). This
axtension of O in fact has no interesting 0= automorphisms. le.

Proposition: GIQ(21/3)/Q; = (id}.
proof: Let f be any Q sutornerphism of (213}, Since 2177 iz a root

of the polynamisl X3-2, {(23/3) must alsa be root of the tame
polynomisl. Unfortunately the cther two roots of this polynornial

are complex, while all elements of the field Q{z21/3} are real. Thus
the anly rect of X3-2 in Q(21/7) is {213} Henece we ymust have
f(21/3) = 21/} We claim f is the identity on all of Q{213 Te

consider the subset of 0§{21/3) on which f equals the identity. If ila)
= w, and f{b} = k=0, then fla-b) = a-h, and Fa/b)l = a/b, 3o this set 1=
closed undar subtraction and division. Jince f is & ) autornorphism,

this sat also contains Q. Hesnce this set is a field. Since 21/ 3= 2173,
this set is a field containing both @ and 21/3. By definition of Q{z1/3)

as the intersection of all such fields, we get that G(2143) is contained
in the field where f is the identity. Thus [ is the identity

autornorphism of Q(21/3), and a{oizl/3y/0) = {id}. QED.
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Thus the Galois graup of 0¢21/3} is ahsolutely ne help in finding
actuasl polynomials over Q setisfied by elements of this field. We can
still do something with our bare hands though, At jeast we know
Q(z1/3) = {m + b-21/7 + ¢-22/3: a b.c in G}, is & I dimensional,
mlgabraic extension of . Thus every element in 0{21/3) =

o+ b-23/3 & 022273 4 bc in Ql, satizfies & polynormnial of degres at
rmost three over Q. Of course 21773 satisfies the polynormial W3-2
over £, but what about the elements 1*21""3, 3+21-"'3, 1+2“3*23"’r31
72-3 (21/3) +5 (22/3), or more generally (a + n-21/3 & 2203

Remark: Our experience with comnputing inverses suggests that
these computations mey be lengthy, since the problem af finding
polynomials satisfied by & given slement contains the finding of ths

inverse of that elament az o subproblern: e if atba+ cwl+da? = O,
and azQ, ther we get the inverze of « as follows: frst

a = ~bm-cal-dad, so0 1 = -{hfade - fefales ~(d/ajxd =

x |-{b/e) - (cfm)e ={d/a)x 2], and thus the second facter on the right
hand side iz the inverse of «. If a = 0, then barcaZ+rdu =
clbrco+de] = 0, and since « = 0 {or else we would not be trying to
find its inverse} we can repest the argument with the equation
lb*cm*dmz] = (. In other words, the point 1 to start with the
polynernial of srmallest degree satisfied by « = 0, which 1z zure to
have n non zero constant term. '

Still the problem must enly he one of linear algebra. Lets try finding
a polynomiai setisfied by o« = 1+21/3 The four slements 1,«,a0,a3
must be dependent in the 3 dirnensiona) space Q(21/3) We
compute: «2 = 1+2(21/3)+22/3 and «% = T+3(21/3)+3(22/3), Now if
we stop writing the actusl basis vectors {1, 21/3, 22/ of {21/3)
and write instead only the coefficisnts, wa cah represent the vsctors
1.a, =2 ad as the coordinete vectors (1,0,0], (1,1,00, (1.2,1}, (3,%,3).
Then we can do row reduction or some such calculation on the
rnetrix with these colurnns, and find that (3,3,3) = 3{1,2,1} - 3(1,1,00
+ 3{1.0,0). Hence xa = 3:022'3{:1'.*3, and ad - 32+ 3x-3 = 0,

An gmsier solution by E, Croot and Scott. since we know that p= 2173
catisfies X3-2, then for o = 142173, we have p = «-1, so =-1 also
catisfies X3-2 = 0, je {e-1)3-2 = 3302+ =3 = [, the samm
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answer as above, Using the easy way egain, We can deal nlzo with
w = 5+21/3 = Tep, where b = 2173 again, hence § = «=3, and thus
(oc-3)3-2 = 0, ie «I-Ga?+27-29 = 0.

1f ¢ = 1*21*’3*22""3, a timiler trick seerns to work, ie. let B = 2143,
so & = l+pep2, then multiply by {1-§] to get a{1-p) = 1-p2 = 1-2 =
-1, sa1-p = -1/, and p = farel)fe, ThusO = pd-2 = {ect1)F3 s - 2,
solot1)d - 203 = 0, ie. «l+JaZeTuel-2ad = ~a 3T 243xrl = O

Wwhat about the genaral case, = = a+b{2 1/334¢(22/3)17 [Much later],
computing by hend 1 got 2I-Famis(3a2-bbclu-{ad+2bI+4c-Babe) =
Q, which seamns ta weork, Note it is manic, hence non trivial. Lets
abhack it on the last case. le for @ = 2-3 (2143} 25 (22/3), since
a=2 b=-3¢c=5,1getd-6ab+{102)x-634 =
(8-54+500-360)-B6(-56)+(204) -634 +

[{-56+270+300) -5(-12+50) -306421/3

((80+54-450) -6(20+9)+6§10122/3 = 0+0(21/3)» 0(22/3) = 0. Hooray

Easier solutien (by Gang Yu): If x = n+b{21/33ec(28/3), then
(x-a)F = 2{p+e 21433 = 2(bI+4c3+6b2e 21/ 3¢ Thl 22/ 3)

= op3edcIBbolx-a). Hence, x satistiss Hx) =
{x-n}3—5h¢{2"ﬂ}—2h3-4¢3 = 0.

We see that finding specific polynomials smtistind by individual
elernents iz ot trivial but it is pessible, and wa have & nice
theoretical condition for when they exrist. Mareover when we know
the Galnis group, at least in the caze of quadretic extensions, the
sutamorphisrms sesm to help us find the polynomials. When a field
axtamsion does not have enough sutomorphisms, ie. when the Galois
group is not big encugh, thers iz £till m proklem.

Exercise #60) Campute the inverses in the form a+b31/ 3432/ of
the elerments 2+31/3, and 1-31/3432/3 of the field Q{317/3); and of
the elerment 21/2431/2 in the field 0i21/2 31/

Exarcize #61) Find polynomisls over € satisfied by the elements
2 . 343 1 - 313 4 3243 and 2172 + 3172
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§18] Construction of the Galois group functer

/e nasd to know mere sbout Galois groups. We need to know when
they are lergse enough to do us any good, but from our earlier
discussion of Balois' ideas, and from general principles, we should
nevs faith that the most fundamental issue is the following:
Cuestion: 15 the Galoiz group e functor? le can we compare Zelois
groups of comparakble fields? 1f kCK and FCL are field extensions, a
hormarnorphism from kCK to FCL should surely be defined as a
hemomorphism K—L which maps k inta F, but the main guestion 1s
whether such a hormnomorphism induces a group hornomor phism
betwesn the Galoiz groups Gr(K) and Grll).

Ta keep the analysiz as sirnple a3 possible, we restrict attention to
sxtensiont of s fived basze fisld k, and since all field maps ars
injective, we don't lose any mores generality by restricting attention
further to inclusions of fields, Thus we assume we have 8 sequence
of inclusions kCKCL, and azk whether thers is an induced

homprmor phisrn of groups between Gy {K¥) and Gi(L). 1f we have an
autarmorphism of K fixing k, to get = harmornor phism of L we would
have to extend the sutcmearphism of E to one of the larger fiald L. It
iz urnclear how to define such an sxtension, ard even if wa could see
hew to define it, thera is no reason why such an extension should be
unique. So lat's try going the other way, from an wutamerphism of
the larger fisld L to one of the smaller field K. Here the definition 1s
slmost autornatic, simply restrict the automaorphism pl—L o K.
Since p fixes k, zo will the:restriction, Still there is & prablem, Fince
there is ne reason for the restriction ¥ —1L to have image equal to
K. le.the restriction p:K—L will be an injection of K inta L thet
fixes ¥, but why sheuld it be an automorphism of K? There daes not
seern to be any reason it will be. Jince we are stuck otherwise, we
will egree to consider only those inciusions kCK for which ell k
sutomorphisms of larger fields always restrict to k autemoerphisms
of B, Sinee we are elso interested primerily in fields chtained by
adjoining solutions of polynominls, snd we need to use concapts of
finita dimensionality, we make the further rastriction that our
extension fields are finite.

Detinition: A finite (hence algebraic) field ex tanzion kCK is called
normal” provided for avery inclusioh Kl in a larger field, every k-
homomeorphismn ¢ XL maps K isomor phically onto itself,
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Cor: If we consider the category of normal sxtensions of k, the Galois
group 15 & functor from that category to the category of groups.

The trouble is we don't know yet whether there ars any normal
sxtensions of k other than ¥€k. We begin by producing one example.
Theorem: The extension RCC is normal.

proof; This iz almost the sarne argument we have uzed sbove, If
£CL is any inclusion of fieids, and pL =L is any B homamerphism,
then (i} iz o root of the polynemial xZ+1. Since x2+1 factors as
fx-il{x+i) over L, then for any element « of L we have @b+l =
{oc-iMe+i) = 0 i#f =i or «=-i. Hence the only roots of x2+1 in L ara

i -i, Thus ws know (i) = 1 or i, Hence gla+hi) = either e+bi or A =bi,
and in particular, § is an sutermorphism of C. Also {C-E] = 2 QED.

Definition: If f is a polynomial of degres n over k, and kCK iz an
axtmnsion fi=ld & sat of elements {ay,...an} in K, not necessarily all
different, is called & "full system of roots” of f provided f factors over
K into linear factors as fx) = cTix-aj), j=1,..n, where ¢ is in k-101.

Gemark: If (a1, .an) iz 8 “full system of roots” of £ in K, then [ has
no other roots in K, since f{p) = cl{p-ap = Uiff b = some « . if f
has degree 1, and if {ay,..,an} is & set of n distinet roots than it iz n
full system of roots of f by tha root/factar theoresm.

Definition: If K is generated over k by = full system of roots far
some k polynomial £, then K is called u "splitting fieid™ for {f over k, TF
splits into linesr factors over K, bul not over any stnaller field]

The next result provides plenty of normal field extensions:
Theorerm: 1f kCK and K is = splitting feld for some polynomial fin
k[¥]. then kCHK iz normal. :
proaf: Assurne K€L, and that ¢ K—~+L is = k-homernorphism.

1) 1f lmq.....an} iz a "full systern of roots” of Fin K, then f haz no
other roots in K. By our usual argument § permutes the roots of f.
Thus o({ai, .an))= {a1,.ap}. Consequently @iK) is a subficld of L
containing k and {a1,...an}. Since K is the smallest such held,
KCp{K). On the other hand since p(k)CK and piini,. .l CK, ¢ {1
iz & subfield of ¥ contmining k and {(a1,...an}. Since X is the smallast
such field, KCp 1{K), Hence pl(HICK, 20 p(K) = K as dasired.
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2) Finally, since K 15 generated over k by lai....ap), each of which 13
 root of F, K is algebraic and finitely generated/k hence finite. QED.

Cor: The extensions QJ/2), OLST), G}, Qlwl, Q2173 w) ars all
normal /0, where w = g2/

proof: These are respectively the splitting fields of X€-2, XZ-3, Kéel,
w3-1, HI-2, over Q. QED.

Exercize #G2) Compute the Galois groups of Qlw), 0izi/3 w) over
ﬂl where J = Ezﬂilfﬁ

Exercize #63) Compute the Gelois groups «f (the splitting fields of] :
(xA-1). (X5-1), (¥6-1), (X7-1) over ©. Can you guess GgiXP-1)7
Exercise #54)] Prove that Q{EU'-"}I iz not normal, over Q.

Exercise #65) If « is a complax number, algebraic of degres n over
0, i=. its ninirnsl polynomisl over Q has degree n, then thers exist
5 distinct G-homemorphisms of Qle) inte €.

§19) Extending field homomorphisms

Naw we know that if KCL are twa {finite} normal extansions of k,
tlhare is & restriction hormornarphismn of Galois groups GplL)— GglK).
wWe know nothing abaut this hornomorphism however. For instance
when is it injactive or surjective? To answer such gquestions and
othears, we will study how to define & k-homomorphismn out of & field
ki . p,..¥), by extending the homomorphizm from k to kiat), then to
kiw p}. and so on until it i defined on all of k{«,b,..¥). This will be
our primery tool for understanding field embeddings and field
autamorphisms,

First we do & warm-up exercise:
Froposition: Gc0{21/3) = NOT a normal extension.

Remark: Recall we know that & field generated by a full system of
roots of a polynornial over the base field is normal over the base
fiald. Hence we would expact that to get & non normal extension wa
would adjoin some, put not all, of the roots of an irreducible
polyromial. “1rreducible” iz impertant here. For instance, ad joining
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only the roots {i,-i} of the polynomisl #XB-1, would still give & normal
extersion, since {i,-i} constitute a full systern of roocts for the
polynomial X241, & facter of X8-1.

proef of Prop: We will shew there are field homeomorphismes

021/ 3= & with image not conteined in Q(21/3), First recall the
basic result, that given KCL, and an element « in L, with minimal
polynominl fin KIX], then Klo) & KiX]/(f). Hote that « does not
appear on the right side. Hence if «,p are two elernents of L having
the same minimal polynomial aver K, then Kla) & Kip),

We will apply this to the three complex roots 2173 e21/3,
w2:21/3 of the irreducible € polynornial #3-2, whers w =efTi Jig o
primitive cube root of 1. This gives three diztinct subfields of C, all
isarmaorphic ta QIX]/{XF-2) hence te sach other, namaly Q(g1/3),
Q{w-21/3), and Q{w2+-21/3). This gives three distinct embeddings of
Q{21/3) into ¢:

1) id: @21/ FH -0zl 3)ce,

2) @21/ 3= Qw21 3)c e (taking 2147 to w2149, and

3 21/ 3 0(w2.21/3)cc (taking 23/3 to w2.21/3)

Only the first of these is an isormorphism of Q{233 with itself,
hence €0(21773) iz not normal. QED.

WNext we turn to the more interesting case of normal extensions,
rmore interesting since there iz more symmetry, more
automorphisms, and thus the sutormorphisms tell us more about the
field extension. 1f KCKCL are fields and kCK 15 a sphiting field, we
know the restriction mep G (L) — G(K) iz wall defined, We want to
prove 8 criterion for this map to be surjective.

Recall that polynomial rings are enother exemple of a functor, in
marticular if X 5 L, then KiX] & LIXl. In fact for any ring map
fR=—5 there iz a naturally induced ring rmap R[X]= SiX] extending §,
me follows: if flm) = a*, for & in R, then the induced map takes Zm;Xi

to Zaj* ¥i It iz emsy to check this is a ring map. Moreover these
induced ring rmeps respect compagition: and jdentities, hence the
nszocintion of R[X] to R iz m functor from rings to rings (always
caminutative with identity). This easy remark will be very useful
it1 proving the rmain Lemma on extending field homomorphisme.
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Sur jectivity Lemma: [f kCRCL are fislds and both KCK and k<L
are splitting fields, then the restriction map Gk{L}— GklK) iz (weil
defined and) surjective.

proof: Assume L = kieey, ..cn) where (m1,..,%nt 15 the full system
of roots of a polyneminl £ in k{X]. Since KkCKCL, f is also a K
polynomiel, and L = k(e .ont = Blat, . xn). Te show

Gy (L) Gg(K} is surjective, we will extend & k autornorphism g K—K
ta & k autermerphism L—L, by first regarding it as an embedding
K—L, then extending it to an ermbedding ¥{«< 13— L, then to

Rl w2)= L, —, 6nd finally to Kio 1, .wnt—L Sosssume pHK-+KCL
iz given, and let g dencte the minirnal polyromial over K satizfied by
«1. Since w1 is & root of £, and f Lies in KIZICKIX], we know that g is
n fmctor af f in K[¥]. By the remarks above the Lemma, we know
the k-automorphism ¢ ¥ — K induces a k suternorphisrn o KX = KIX],
mence takes the irreducible factor g of £, to an irreducible polyneomini
plg) = g* which is & factor of p{f) = £* In fact {*=f since p is & k
hornomorphistn and § iz in ki¥]l. (The polynomiai ring funetor takes
the jdentity map on k to the identity rmAp on k[¥]) Since L contains
a Full systern of racts of f, these roots conitain & full system of roots
of g*, so let 1" be any rost of g* in L. Then p induces k

isomorphisms Kim1) & KIXl{g) & RIX/ (=) & Rlee1*)CL, and hence
the composition is & k-embedding Kix1} = 1L. Repeeting the
mrgument, we get a k embedding K{e1,0:2) = (K{e1)){x2)—L, and
thus eventually a k-embedding L = Klay,....on)—L. Sineelis
sormaal over k, this last map is & k automorphism of L. QED.

Remark: Constructing sphitting fimlds.

It is frequently helpful when working with polynomials over Q to
use the fact that QCC and € s “algebraically closed”, hence every
pelynomial over 4 hes a cormplete system of roots in €. Bince
splitting fields provide the only examples known to us of normal
axtensions, we might az well point oul that every polynornial has a
sphitting fleld. Indeed constructing splitting fields is vary easy Using
ogur fundamentsl teool for studying migebraic field extensions, of
forming the quotient of n polynomial ring by & maxirnal ideal.

Lernrria: Let k be any field and f any polynomisl over k. then thers
is a field K contsining k, and in which f has a root.
proaf: This i3 30 easy, the hard part 1% psyehological, ie. belisving
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that it warks. Tha field axtension is just K = kIX1/{g), where g iz any
irreducible factor of £ in kIXl. We know (g) € klX] i3 & maximal
ideal, so k[X]/(g} i= a field, and since kni(g) = O, the map k—=k(X]/{g) is
injective. Hence we can replace the image of k in K = k{X)/(g) by &
itself, so that then K contains k. But why does K contain a root of (7
Since g is & factor of f, it suffices to see K contains a root of g, and
here is the psychojogically tricky part: Let h* dencta the image in ¥
= k[X])/(g), of & polynomial h from k(Xl. [e h* = the coset h+{g).
Then the root of g in K is just ¥¥, the coset af . Why? Well the
map k[X] 2 kXl (g) iz m k-algebra map, i= a ritig map which iz the
identity on k, and it takes g to zero. Hence the itnage of gl¥) =
el in k[X}/(g). is D = g* = E{aj*)XN*)) = Ta{X*)) = g{X*). That
sayz exactly that X* iz a root of g in K= kl¥I/{R), and hence also a

root of f. In our old notation, where we used [h] for the cosst of h,
this says [0] = [g(H)] = gilX]}), 20 IX] iz & roat of g, in K. QED.

Cor: Given any field k and sny polynernial £ in kiX], there is & field ¥
conterining k in which { has a full system of roots, hence there is alzo
g splitting field kCL for f in K.

proof: After constructing a field Ky in which f has st least one root,
then f factars aver Ki into factors at least one of which is linear. If
all facters are inear, stop. [f not, and g iz & non linear facteor of f
over K., construcst sncther extension field Kz of K1 in which g has a
root. After at most n o steps, where n = degree (f], wea have a field
extennion K ¢f k, in which { haz a full systern of reots, [t seems to
me that this K will be a splitting field of f, but at least the zubfield
LCK generated over k by the rootz of f is w splitting field for f over k.
QELD.

Indeed, up to k-izomorphism, a splitting figld for {f is uniguely
determined by f We prove s mera general statament:

Lemma: Let k & k* be an izormorphism ef fields inducing an
iscrnorphism k(X] & k*X] of polynomial rings. 1f £ iz a polynomial in
k[X], and f* the corresponding polynomial in k*{X], and if kCK,

k* CK* are splitting fields of £, f* respectively, then the {sermorphism
k = k* extends to an isomorphism K = KY

proof: (Induction on degree of £) If { iz linear or factors into linear

factors over k, then k = K, k* = K* If { is irreducible quadratic,
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then k & k* induces ¥ = k[XI/(D & k*(X)AE*) = K* . If f has higher
degree, and g is an irreducible factor of £ in kI¥X), corresponding to
the irreducible factor g* of f' in k*[X], let 1 be v roct of g in K,
mnd p1 be a root of g* in K*. Then we have again

Eok(mq) & kX g = k* (X)W (g*) = k*(p1)CK*. Now K can be viewed
as the splitting field, over ki« 1), of the polynomial h in klec 1 )X)
cbteined from f by dividing cut the factor (¥-«1). Also the
jsornorphism k{ce1)ad k*(p1) induces an isomorphism ki« 1i¥] =
k*{p1¥] which carries h to tha polynomial h* obtained by dividing
i* by (¥-p1). Then we can spply induction to get an isornorphism

K & K* between the splitting field of i and that of h*. Morsover

this isomorphisim extends ko) = k*{p4), hence alss extends k = k¥
QED,

Mow we can characterize {finite) normal extensions.

Prop: kCK is & finite, normal, field extension, if and enly if K is the
splitting field of sorme polynomisl over k.

procf: We have proved "if” showve, s¢ we prove “only if"

Lernitma: §if k€K iz a finite normal field sxtension, and « in k is any
elermient, then the minimal polynomial of « over k splitz cornpletely
mto linear factors over K.

procf Let = be any elernent of K, and let K= k1,2, xn). Then
we can contider also ¥ = ke . =i, xn) Now enlarge K to a splitting
field L for the product gg1g2. €n. where g is the minimal polynomiai
for « over k, and gj it the minimal palynormiad for o j over k. If
sorme ract p of g iz in L but not in K, we will define a k-izormorphism
¥—L which iz not an automerphism of K, thus proving K is not
normal over k. We begin by defining k(=)= kiXl/(g)sk(p)CL. Then
we continue as in the axtension argurments ahove, to extend this to
B k-=mhbedding k{e,«1)—L, .. and finally ke« &, «n)=—L. To carry
out this extension, all we need at each step is the knowledge that a
ssrtain polynominl has roots in L. In fact this is already guarantead
by our hypotheses, but if you have any doubt, just enlarge L
further each tirme you need to, by adding the roots you nead. This
praves K is in fast not nermael, since the map kix, o 1, tpni—L takes
« to p, and p iz not in K. QED lemma.

procf of Prop: Let k€K = kiey, =n) be any finite normal
sxtension. Then the minimal polynemial gj of each = j splits
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cotnpleteiy m K by the Lemma. Thus K is & sphitting field of the
product TTg;. QED prop.

{hur old principls, that a k-homornorphism permutes the roots of
sny piven k pelynormiel, haz an important consaquence for
romputing Galois groups which we need to state:

The Galois group of 8 polynomial is isomorphic to s subgroub of the
tat] sat of dist t roots of t

IMore precisely,

Lemma: Assurme L = ki, ,2nl, is o splitting field of & polynomal
fin ki), where (s, .,ccp) is the full systerm of roots of £ Then Gr(L?
embeds as a subgroup of 34, whers d is the number of distinct roots
of f arnong the (x1,.. . ®nl.

proaf: We have zesn many times that every k-autocmorphizsm ¢ of
L must carry a raot of f to snother root of f, hence p parmutes the
set of distinct roots, sy (w1,...xq). Since these roots alac generate L
over k this permutetion determines ¢ L— L. Hence the restriction
homomerphisrmn Ge{L)— Bijie1,. . ,=d) [restricting ¢ from an
isomerphism of L to & hijection of the set {o 1,...xdl] iz injective,
Any ordering of the roots yields an embedding Gg(L)— Bijlocy,....cd}
= 34. QED.

Cor: If L. = klmy,..,on), it & splitting field of a pelynomial f of degree
n in k[X], then #Gk(L) dividex nl. In fact #Gg(L] divides di, where d
iz the number of distinect roots of f,

proof: This follows fram Cauchy's thearsm. QED.

Cor: I f is an irreducible polynomial in k[X] with d distinet roots,
{x1,..%d}, and splitting field L, then Ggil) acts transitively on the
set {aq,. ., xd}, and hence d divides =ag(L),

proof: We have zeen, at the first stage of the proof of the
surjectivity Lemma, that we have a cheice of mapping «1 to any
root of its minimal polynomial over k. Since f is irreducible over k, f
itgelf is the rminirnal polynomial, so we can map «1 to any other
root af [, Since this extends to an elernent of Gy{L), we soe that
indeed @R{L) acts transitively on the set of distinct roots. That
means the set of d roots iz an orbit of the Gg(L] action, so d is the
arder of an orbit, hence also the index of an isotropy subgroup in
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Gy(L). By Cauchy's theorem, d divides »{Gx(LY). QED.

The methed of extending homormorphisms ellows us to be still more
precise about the order of the Galois group:

Lemnma: Assume L = kl«1,...#nl), 1= 8 splitting field of a polynemial
¢ in kI¥), where (e1,.. an) is the full system af roots of { in L. Then
#Gk(L) ¢ |Lk] = degree of L over k.

proof: Since every k- mutarnorphismo of L restricts to s k-
homermorphism of each of the intermedinte fields kicy, o j}—&L, we
can obtain every such elsment of Bx({L) in stages, by starting with
the inclusion mep kCL, sxtending 1t to a map kixzil—L, then
extending it further to a MaE klewy gL, ate_  until wa get a Map
kley,. .wp) = Lo L Mereover if there are saYy, two ways to extend
the inclusion map kCL to a map of kix1}—L, and then three wajys
to sxtend further to o map ki« {,e2)—+L, then thers are altogether
six mxtensions of kCL to a map of kio 1,2}~ L, since we have two
choices for the image of «1, and then three cheices for the image of
w2. Reasoninhg in this way, one CAL 308 that the number of k-
automaorphisms of L equals the product of the number of possible
extensions at sach stage. From the proof above, we know the
nurnber of possible extensiens to kleq) is Just the number of distinct
roots in L of the minimal polynomial g of «1 over k, which iy at
rmost the degree of g over k. Moreaver the degree of g over k equals
the degree of the field sxtension [k{e1)k]. Hence the nurmker of
extentions to k(e 1) is at nost the degree [k{e 13k]. Sirnilarly, the
number of further sxtensions to ki 1,0c2) is at most the degres of
the field extension (ki1 %2 k{em1)). Consequently the nurmber of
avtensions from kCL to kisi,az)—L is at most the product of these
degrees, [klec 1)kl ik(onq,0c2) ko)l 2 [kfe 1. 22)k], (by multiplicativity
of degrees of field exterzions). Continwing, we get that the number
of extensions of k~hornemorphisms frerm XCL to L—+L, ix the
nurmber of k autormorphisms of L, is st most the product

ket )kl Rle o b iMoo dklect, oonikiet, apn-11 = Lkl
QEL.

1t is helpful to know when this bound is an equahty,
Definition: A “separable” polynomial is one whose roots are all
distinct, in any splitting field.
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For separakle polynomials the bound above 15 an axact result
Cor: If k<L is & splitting field of a "separable” pelynomial f in kl¥],
then wGK(L} = [Lk].

proof: Thix it what was proved above, since the number of

axtensions at each stage war the number of distinct roots,
QED.

Fortunately, separable polynomiels are quite common.

Frop: In = field of characteristic zero, all irreducible pelynorninls are
separable.

proof: If one defines the derivative of a polynomial Enj}{j by the
usual formula EjﬂJHj"l, then one abteins the usual preduct rule fer
derivatives. |The proof iz in Brauer's notes] Hence if a polynomial f
has & repeated root a, then f = g{}{}-(ﬁ-n}z, for sorne g, and a is alzo
m root of the derivative ' = gh{¥-a}2+2p-(¥-n}. If f is irreducible,
then { i1z the minimal polynomial of &, hence rnust divide every
othar polyneornial satisfied by a. Thus if also f has & repeated root,
then {f rnust divide it own derivative. Since the derivative of §f has
lovwer degree than f, thiz can happen enly if the derivative is
identically zero. In characteristic zero this cannot happen for a non

canstant polynornial, and hence an irreducible polynomial cannot
have n repeated oot QED.

Cor: Over a field k of characteristic zerc (ie. any field containing QJ,
if I is & splitting field of a k polynomial then wGE(L} = [Lk]
progf: At each stege of the extension process in the Lermnma abous,

the polynornial uzed was a minimal one, hencs irreducible, hence
separable. QED.

Remark: The non constant polynomial Ea_—'IH.j can have derivative
zere in characteristie p > 0, if in the derivative Formula E_jaj}t.i_l all
the multipliers | are divisible by p, sinee multiplication by p doss
meke everything zerg, For exernple in cheracteristic 3 the
derivative of X3-1 is zero. The polynamial ¥3-1 = (2-1)3 thus has
repesated roots in 73 but it is not irceducible, |Cf, the next exerciza]

Exerciae #566) [f T iz a variable, n is prime, and Zp[TR] = the ring
of polynarnials in TR with coefficients in I, lat F = Fo{TH} be jtg



42

guotient field, or “field of frections”. Prave (¥N-TN) is irreducibls
over F, but splits as {X-T)7 in the extension field FiT) & ZniT}.

Exercise #57) If the minimel polynomisl gj of #ach o j avar F is
separable, then the same is true for all elements of Flaq,..,=p).
|Hint: Arguing as above, calculate the nurnber of F-embeddings
Fleey,...oon) = L, where L is & splitting field for TTg;j]

Exercise #68) {1} If §{X) iz an irreducible polynermial over k all of
whose roots are equal in the splitting fisid L, then prove EglLl; = {fidi,
hence (=) = « for all & in L and all ¢ In ERiL).

[ii) If QcL is = finite normal extepszion, and o« is an elemeant of L
such that plo) 7 « for all ¢ in Gg(L), theh prove o isin Q.

fiii) If QcL is » finite normal extension, B is in L, and GQ(L} =
{p1,...qn), prove that f(X) = Tj(X-gjiplisn polynomial with
cosfiicients in @, and such that f{p} = 0.

{iv) Deduce that [Q(p):Q] ¢ «{GglL).

Car: 1f f is an irreducible pelynomial of prime arder p over Q, and if
f has precisely two non - reel roots, then aglf) x Sp,

proof: We know G iz isomorphic to 8 transitive subgroup of Sp,
hence & subgroup whoss arder is divisible by p. Then G contains an
elernent of order p, and since p iz prime, a cycle of order p, which
we rnight as well denote by (123..p). The splitting fimid 1. lims
between © and €. Since {f has precisaly two non real roots, cornplex
conjugation is w Q sutormarphism which transposes sxactly two
raots, hence G contains a transpesition (abl. We know from a
previows exercise that (123 _p) and (ak) generate Sp, hence § = Sp.
QED.

Cor: The Gelois group of the palynomial X9-2 over Q, haz order 8.
proef: We can ohtain the splitting field in two stages from 0Q,

extending first ta 0(21/4), then te Q(21/9, i} [= the splitting field of
wd-7 ouer €. The first extension adjoins a root of the polynomial
%4-2. We clairn this polynornial is irreducible over 8. We know the
roots of the pelynomial to be {2174, —z1/4 i21/4 -j21/4) Hence
there are no rational roots, and two imaginery roots. Sinca tharsa
are no roots in O, there cannot he & linsar factor aver Q. Hence if



4 3

®i-Z fartors aver Q, it factors into quadratic factors. Since anwy
factor with coefhicients in € must have imeaginary roots in pairs, one

gquadratic factor must be a constant times {(X-i21/9)(K¥+iz21/4) <
(¥Z+21/2) Hence the only possikle (monic) quadratic factors ars
(XZ2+21/23%2-21/2)  But these do not have rational cosfficisnts, so
in fact (X%-2) does not factor over Q. Since X9-2 is irreducible over
0, the extension Qiz1/4) is isormneorphic to QIH]/(X9-2), and thus the
degree [Q{21/1Q] = 4. Now Q{214 -21/4 j21/4 -jz1/4) -
Q{2174 i}, 50 we can achieve the full splitting field of X%4-2}, by
ndjoining = root of X2+1 to ©{21/9). Since 0(21/4) containz no
imaginary numkers, X2+1 is irreducible over €(21/4), and thus the

degree [@{21/410] = Z. So the totsl degree [Q{EU“, iy = (4)(2) = &.
QED.

Example: Explicit computation of tha Galois grﬁup of M4-2,
Notation: If F is a polynomisl cver k and L iz s splitting field for f
over k, let us denate the Galois group @k{L) by Gy(f). We know the

splitting fi=ld L depends only an the pelynomeal f, so thiz notation
makes zense.

The method of extending homomaorphismz allews:s uz to cornputs the
Galoix group EQ{H‘LEJ completely, as follows, We knaow the splitting
field carn be achisved in two stagss GC Q{Eif‘ljcﬂizif‘*,i}* but 1t 13
convenient to do this in the opposite order, QCQ{C@{21/95), first
ad joinirg i, & rast of X2+1, and then adjaining 21/4, @ root of the
polynomial X9-2, which is still irreducible over Qi) [by tha
rnultiplicativity of degrses, [E(Elf‘l,i}:ﬂl =

021/ $)1gle2l/4,00021/9)] = (4)2) = B = [ldlazl/4 Hai)] -
(2)[0{21/4,)0{i)]. Hence the minimal polynominl of 21/4 over G(i)
ztill has degree 4 |Since thiz tenond polynomial }C‘i—E, hez co=fficients
in @, it will not be changed by our choice of the homomorphism on
Qi)

We will obtain Go{0{217%, i) by computing all ways to extend the
inclution §—=¢€ to ambeddings of G{i)— €, and then all ways to extend
further to ernbeddings of Q(i,21/4)— €. Since the minimal
pelvnaornial of i over ) has twa rootz, there are tuwrg ways: Lo axbend
the inclusion €= C to an embadding of Q{i)=C; ie we can send i to
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aither 1 or -i. Sincee there are four roots of ¥4-2, we can sxtand
such an emnbadding in four weays to an embedding of ofi,zl/4)—c.
e we can send 21/4 to any one of {21/4, pifd j21/4 -izl/4y,
Finally we comnpute the Galoiz group by computing what
perrmutation of the =t of roots fz21/4, —E”q, iE”q, ~i2l/ 1 these

homotmorphisms give us, We carry this out fully next, numbering
the homomotrphisms os we go

#1) Map i to i, and 2174 ta 21/4. This gives the identity map, 1=,
the inchasion @i, 2174)}cc.

#2) Map i to i, and 21/4 g i21/4,

47) Map i to i, and 2174 1o -21/4.

#4} Mapitoi, and 21/4 o -i21/4,

#%) Map i to -i, and 2379 to 2171

#6) Map i to -i, and 2174 ta j21/4

#7) Map i to -i, and 2179 to -21/4,

#8) Map i to -i, and 2174 to -iz1/4,

Hext we compute the permutations each of these homomerphizms
induces on the =t of roots {214""‘, iEil""*, -z1/4, -121""4}, which we
choose to order as they occur cyclically around the unit circle in the

complex plans. So denote these raots as 2144 = g7, 2174 = b,
_zdi4 - e —izlf4 - g~

#1) is the perrautation id = {a){bl(c){d). :

#2} sends 2174 1o j21/4 mnd i to i, hence j21/4 g 2374 —2174 4p
-iz21/4, and -iz1/d o 2174 This is the cycle (abed),

#7) sends i toi, and 2174 to -21/4, hence 2174 1g -i2174 2174 1o
21/ gpd -i2174 to 2174 This is (mcHbd).

#4) sends i to i, and 2174 1o -i21/4, hence 12174 to 2174 _21/4 ¢g
21449, and ~iz1/4 o -217% This is (adch),

#5) sends i to -1, and 21/4 (g 21*"’4, hence 2174 to -izlf'i, —21/4 1a
_z21/4 and -i21/4 1o 2174, This is (bd).

#6) sends i to -i, and 2174 to 2174, hence iz1/% to 2174, -21/4 1o
-i21/74 and _iz1/4 g -21/4 This is {ab{cd].

#7) sendt i to -i, and 2174 to -21/4, hence i21/4 ta j2lfe 2174 p
21/4 and -i2174 ta -i21/4, This is {ac),
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#8) sends i to -1, and 2174 to -i21/4 hence 214 1o -21/4, 2179 ¢4
2174 and -i21/4% to0 2144, This is (ad){be).

Looking at the subgroup of 34 formed by the permutations above,
we see that it consizts exactly of the full group of syrmmetries of the
syuare whose vertices are lettered counterclockwise az abod, The
first four are rotationz, #5, 47 are reflections about the two
dimgonals, and #G, wB are reflections about the two lines hisecting
opposite pairs of sides. Thus GoiX9-2) = D4, the (8 - element)
dilhedral group on four lettears, QED,

Eemark: This computetion was made sasier by choosing successive
extensions for which the irreducible polynominals never change
during any of the extenzions of homomerphisms, The situation iz
different for the extensions QCO(cO{iz/2c gzl ). 1t is
perhaps worth doing this more complicated example to illlustrate tha
full generality of the proof of the surjectivity Lermnma, in particular
to see why the irreducible polynomial g uyed there can become a

diffsrent palynominl g*. We will be sormewhat more brief,

vl Mepite i, then 2172 o 2142, then 2174 ta 2179, (the identity}.
a2 Wap i ta 1, then 21/2 4o 21‘"2, then 2174 1o 2174

v3) hap i to i, then 2172 vn -21*"'2, which changas tha rminirnsl
polynomiel for the next extension from Xe-2 /2 imie X2+21/2
Hence we must map 2179 to a roet of X2+21/2, say 12144,

wd) Map i to i, then 21/2 +g -21/2 then A 21/4% ro the other root
of }{2+21-"rz, that is -1211"'4,

#5) Map i to -i, then 21/2 to 2172 then 21/4 to 2171

¢5) Mapito ~i, then 21/2 10 2172, then 21/4 to -21/4.

#7) Map i to -i, then 21/2 to -21/2 then 21/4 to i21/4

#5) Map i to =i, then 21/2 to -21/2 then 2174 1o -j21/4

In terms of cycles, with the roots lettered as before, ie with
az21/4 b = 28/9 o= -21/4 g = 2174 e get:

w1} = (a)(bi{cid)

#2} = (ac)bd)

¢3) = (abcd)

wq) = (mdchl.
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#*5) = (bd)

#5)] = (mc)

w7 = (abMcd)

#B) = {ad)(be)

AE®In We sex that these permutations forra the full group Dy of
symmetries of the square with vertices labeled cyclically a,b,c.d.

In the next section we consider the Galejz group of an extension
fermed by adjoining a single nth root, the fundamental building
block of a redical extension. This is the first step in understanding

the Galois group of a "selvable” polynernial
calra bl

520) Polynomials of form (XP-a) have sbelien Galois groups
Back when we introduced the ideas of Galaiz theory and the problem
of solving polynomial egquations we chserved that the roots of the

polynernial X0-1 form a group, cyclic of erder n, and we said it did
nat seers too gutlandish te guess that tha Gelos group of this
palynomial might be cyclic of order n. Unfortunately, & few

calculations say ctherwize. Fer instance, Ké-1, alrendy splits over Q,
so the Galois group Eq{‘h{z-:l} iz cyelie, but of order one, not two.

Then for X9-1, this palynernisl is not irreducible, but factors as
(X-1)WZ+¥+1), hence the splitting field is obteined by adjoining
raat of X£€+¥+1, Since thare is only one resl cube root of 1, this
polyrnamial is irreducible gquadratic, so the Gelois group owver § 13 £2,
cyvelic again but of order 2, not 3. We might guess now the group of
¥N-1 pwver Q it alweavs cyclie of order n-1, but first lat's compute one
more. The polynomial X9-1 sphits over Q into the irreducible factars
(H-1)K+ 11 ¥2+1), and thus the splitting field is cbtained by adjoining
a root of X2+1, also irreducible guadratic, hence the group iz 72, not
73, For X°-1, we can [factor at least as (M- 1IH N+ NI e WM+ 1), but it

iz niot clear whether the second factor it irreducible cwver O. I it is,
then the Galois group has order 4, but what is 1?7 The next case, of

K6-1, is emsiar tince it factors ms XB-1 = (X3+1XXF-1), and since a
prirmitive 6th roct of 1 cannot be a yoot of [%3-1), the primitive
roots must all be roots of (X3+1) = (X+1}X2-X+1), hence of {{Z-X+1).
Since this gquadratic has no real roots it is irreducible sver Q. Thus
sgain the Galois group of XO0-1 over 0 is Zz. We really aren's getting
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a clear picture this wav, and all the groups we could compute have
been cychie, You rmight try to guesz the gpeneral rule.

As an alternative, instesd of trying to generelize these exarnples,
Just for fun let's use the "Zen” metheod of guessing, is. the answer
rmust be something nice and simple, or &lse we would never guess it
And mathematics 1= part of crestion and the natural world, =0 the
answer must be something beautiful and netural anyway. (If vou
think ne respectable scientist ever argues this way, read Galileg
sorne tirnel] S0 try to think of & group naturally associated with the
number n, but different from I, Incasen = 2, it was T4 = 0} in
caze n = 3 it waz 2. mcasen s 4,1t was Z2.Iincazen - o we
think it has order 4; in cazsen = 6 it was Z2, What other group can
vou think of azzociated to n theat hes theoze orders? Well vou might
recall that Zpn iz & ring, ie. multiplication makes sense as well as
addition, and Ty iz & group only under addition. But for example in
Z3 we get & group under rmultiplication if we look only at the non
zero numbers {12} le 22 = 1, and 1-2 = 2, and 20 an. Got the idea?
Every ring has two groups associated to it, the whole ring is a group
for addition, and the invertible slementz are a group for
multiplication. [Tn functor languege, thers are two “forgetful”
functors fror rings to groups, (i) (R+,)={R,*}, and (ii) (R, + - )~ {R* -]
where R* denotes the invertible elerments of R] So Zn has = group

of units In*, represented by the positive integers less than, and
relatively prime ta, n. These groups have the right orders, at least

- 3o far, assuming the polynomial {(X9+X3+XZ+¥+1) in the case n = 5 is
actually irreducibla aver €. So we might refine our previous guess

and conjecture that the Galos group of XB-1 ocver §, is isomorphic
ta Ly *, the rmultiplicative group of units of the ring I, To find sut
we will sirnply write down the Q autocmorphisms of Q(XD-1) az best
we can, using what we know about the complex roots of theza
polvnornials. Since it tekes a bit of werk to show irraducibility cver

D of the pelvnomial whose roots sre all primitive nth poots of unity,
we will settle for rormething less at the moment.

Proposition: For every n 2 2, if 1 is & primnitive nth root of 1, then
O{n) is & splitting field for (¥T-1) hence norrmal cver Q. Thers js an
injective homornorphism from GOIXT-1) = GolQinl) — (Zgn*, ),
hence GRiXP-1) is isornorphic to a subgroup of (Tpt.-). In particulsr
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Sg{XN-1) is abelien (but not necessarily cyclicy,

proof of proposition: Let n be a primitive nth root of 1, and let f
be itz minimal peolynomial over Q. For any other root p of [, there is
a Q isomorphism of fields between Q{n) and Q{u) taking n to u. Thus

qk =1 iff uk=1, so if {r=m1. nz. na,...ndl are the roots of f in €, then
all d of thern are primitive nth roots of 1. Since every nth root of 1
is a power of n, the splitting field of XD-1 over © is simply Qin).
Hence GO{XN-1] = the set of Q@ autormorphisms of Q(n). By our usual
principle, every € autemorphism of Q{n} takes one root of f to
another, and conuearsely, for every root p of f, there iz a Q
autormerphism taking n to w. [You might think that surely there is
a Q suternerphism of Q(n) teking n to any cther primitive nth root
of 1, but if you can prove it you will have proved the nth
cyclotomic polynomisl is irreducible. So you might tryl Thus
GolXt-1) has exactly d elernents, 1....9d. where :p_jl:ni = nj. fer
j=1...d. Now szince cach nj iz itself a prirnitive nth root of 1, then
pjin) = nj = nFj for same integer rj relatively prime ta n. Now rj i3
not well defined since n = 1, so p¥*0 = nf, but p¥ = 0¥ iff res mod
n. Thus we have a well defined, injective, function GQiXD-1)—+In*,
taking g to [rjl. We need to check whether this is a
hornomerphism, ie. whethar ¢ jopk goss to [rjlirk]. Sinece (4 jrepiedin
= Epjftpk{ﬂj} = {nTkITj = t Tk, thiz is indeed a hamornorphism, Thus
GBR{XT-1) it isomorphic to a subgroup of (Zn*,-), and in particular
GQi¥"-1) is sbelian for every nzl. QED. -

Remarks: i 45 vou may have realized, the proposition nkove can
mlss be proved by the following reasoning: the n reots of the
polynomial X0-1 form a cyclic subgroup of the maltiplicative group
of the splitting field ¥ = &(n), hence the slernents of GQLK) restrict to
graup eutormnorphisms of Zy, ie to elemnents of Avt(Zn) = Zn". Since
the roote of X-1 penerate K, the restriction mep is injective. This
shows too why the fact that the roots formed a cyclic group should
have suggested that the Galois group was likely to be, not cyclic, but
the atitormorphism group of s cyclic group.

il It can be proved that the nth "cyclatomic palynomial’ i) =
TTiX-n), product over sl primitive nth roots n of 1, has rational
coefficients amd iz irreducible in Ql¥]. Consegquently ths two groups
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GQ(XM-1) end Zn*, both heve the same order qin), ("Euler's phi
funetion” of n), and hence sctuslly GQiXDN-1) & Zx*. A formule for

pin} is given in bocks on nurnber theory, end it is known that In®* i3

not siweys cyclic, but it is always a direct preduct of eyclic groups,
and iz wctually cyelic for example when n is prime.,

Mext let's try the Galois groups of squations of form Kf-a, but net
ower . Instead let's consider an extention of formn FCFle), whers

xN = m iz in F, and where F elready contains a sphitting field for
¥T-1  Interestingly, the group GF{F(x}] is o subgroup of (Zn,+).

Proposition: If F is a subfield of € contaimning a splitting field for
Wh-1, if « belongs to € snd «f = & iz in F, then F{x) iz a splitting
fizid aver F for XT-a, and theare iz an injectiva homoemorphism

GRIF{ )= (2n,+). In particular the extension FCF(«) iz norrmal and
the Galois group GF(F(=)) iz eyche, hence abelian.

proof: If « is one sglution of ¥0-a, and n is any primitive nth root
of 1, then {an)? = xfn?l = a1l = a, so «n is another tolution of XD-n.
Thus if F contains » splitting field for XP-1 and o iz one root of
Xri-p, then Fled is & splitting field over F for ¥P-a, with the

FCF() iz & normal extension. The group GF(Fla)) of all F-
automnorphisrns F{a) = Flx), carresponds precisely to the set of
distinct roots of the minimal polynomial for « over F, which is some
irreducible factor f of X%-a. [Note that in Qi), the splitting fisld for
¥4-1, the polynomial X4-4 has re roots, but HA-4 = (X2-2) K22
Hence the minimal polynernial for 4179 iz the irreducible quadratic
[¥2-2) the splitting field of ¥%-1 has degree 2 over Q(i), and the
group GoiX1-4) is iscrnorphic to Z2]

So let & belong ta F, lat « be cne complex salution af XM-a, and let
{a¢ = wq, @2, .., ad} be the complete set of distinct complex roots of
the minimal palynemial f of « over F. { iz & factor of Xf-na, so0if n is
any primitive nth root of 1 in F, then the cornplete set of roots of
are o = o] = a:j_-r.ﬂ, o2 = alnl2, «3 = «xinq’3, ., «ud = ainid, for
sorme intagers rj, where rl = 0.

We have observed that Fla) iz a splitting field for X03-a, and now wa
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see the group GF(Fla)) consists of ¢1...9d. where gjle) = wnfj, The
exponents rj are well definsd and distinct med n, 50 we get & well
defined, injective map GRiFlal—~In, sending pj to rj.

Clairn: This map is a hormomerphism to (@, *}.

proof of Claitmn: We rmust show that ¢joyglk goes 40 Tj*Tk. But

I{ijn:pk}inr.]' = {gjlypkix)) = nfj{nfku:} = q{“frk}u, so thiz is tras, and
the map is a homomorphism. QED Claimn.

Thus GF{Fle)) it isornorphic to & SUbgroup of (Zy,+), and in particular
iz cyclic and abslian. QED Prop.

At last we are ready to prove Galeis’ necessary condition on the
Galois group of a “selusble’ poiynomial. We do so in the next sagtion.

§21) ®aloiz groups of solvabls peolynomials have prime ordear
aimpla constituents

First we make the following definition

Definition: A finite group G is called “solvable” iff all the simple
constituents of every (equivalently sarne) composition zeries for G
are abelian, eguivelently iff they are eychc of prime order.

Definition: A field extension Kcl is called a “radiesl extension’ iff L
iz a finite extension of K obtained by a seguence of mxtensions of the
following forrn: KCK{z 11K, wz2lC CHlel, 2,25 = L, where
for each j, some positive power of « | lies in Kiey, ®2,.ej-1).

Definition: A polynomisal f over @ can be “solvad by radicels” iff the
splitting field F for f is eontained in a radical extension of Q.

Theorermidalois): If a pelynomizl f over & can be “solved by
radicals”, then the Galois group of its splitting field aver Qiza
solvable group.

This will follaw from sll the subsidiary results to comne next.
We need ane more ingredient, & sirnple “trick” we borrow from the

discussian in Michsel Artin's Algebre.

Dafinition: A "good” redical extension of &, iz m radical extenzion K
which it normal over G, and of the form
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Q) C0in =) C0(n, o, 2)C . COR,x1, ... xs) = K, where for some
1, N i5 & primitive nth root of 1, and for every j, {« )7 balongs to
Clnog,...®j-1).

Lernrna: If f is in Q|X] and f iz solveble (over O) by radicals, then
the splitting field of f lies in same good radical extension of Q. In fact
every radica) extension of @ hes in a good redical extension of Q.
proaf: Start with a radical extension of form

QCQlocg)CDlecy, a2)C . C0Q{e], . o5}, where sorne positive power rj
of each o j lies in the previous field 'E{nr.i,....,aj—ﬂ- 1f we take n =
TTrj, then the nth power of each « j lies in the previcus field also.
Then we can teks n to he any primitive nth root of 1, and ad join n
to 0 firet, giving us the sequence of fields

Qi< Oin,e1)cOine,azic S0, = = K

ow each field is a zplitting field over the previcus one, hence
normal; 10,01, .., « j} is the splitting field over Qln,xe4, . & j-1) of
HD - @), where a; = {« jJ1t] The proklem is that the last field K may

noet be normal over @, le the equation X¥-aj for «j does split in K,
but the coefficient M oin this aguation hss in Of« 1,..-_,a;jw1.'!, not in Q.
“We have no reazon to think that any =gquation over Q for oL zplits
in K. The paoint of the nexat trick i that we can adjoin the other
roots of such an egquetion without changing the fact that we have a
radical extenszion.

We are simply going to enlarge the field Din,oq,...0¢) until it iz
nerrmal over €. The only technigque needed is the one usad in car
proof of the fundarnental surjectivity lernma for fieid
automerphisms. We state it next in the form we will use.

Sublernma: [f p F—C iz any field bernornorphisrm, and p is any
element algebraic over F, there iz an extension of ¢ to a feld
homomorphism 2 F{p)=C. More generally, if FCK iz any finite field
axtention, thare iz an extenzion 3K C of ¢ from F te K.

proof of zublernma: The srnbedding ¢ maps F isomarphically to a
subfiald L of C, and the induced isomorphism F(X] = LX) carries the
minirmal F-polynomial g of p to an irreducible L-polynomial g* .

Then FCcF[X)1/ (g}, end LCLIXi/{p*} are subfields, and the izormorphism
FIX]/{g) & LIXI/{g*) extends @. If p* is any complex root of g*, § can
ke defined as the composition F{p) & F{X)/{g) & LIX]/{g®) = Li{p*icC.
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The mare general statermnent is proved by applyving the argument
repeatedly to a finite sequence of elernents generating ¥ cver F.

QED sublemma.

PBack to the Lemma: Now consider mgain Gim,ect,. ,og) = K, lat bk
Le the minimal polynomial of « j over @, and lst h = TThj. The
elernents o 1,...%g are somea of the roots of h. To enlarge K to &
norraal extension of O, we claim it suffices to ad join to K also all
other roots of h. Since all raots of the minimal polynomial for n are
nlresdy in K, the snlarged field will be the splitting field over Q of
the polynomial h{X)-{(X7 -1). Le.:

Claim: If p1,...¢gd is the sat of all 0 horomorphisms g K—C, then
loc 1, g witeed), . @1los)i wpdbee 1), pales)) is & completn sat of
roots of h, sormne roots possibly occurring repeatedly.

proof of claim: 1f p KL is a G-homornorphism, and « is a root of
h, then we know very well that since h has Q coefficients, pla] is
agsin & root of k. ln the opposite direction, if p is & roet af h, then &
i+ » root of some irreducikle hj. snd we can defina & Q-izomorphism
Q{aj]-*tr{.ﬂ}cm taking «j to B By the sublemma above, this map
extends ta a - hernemorphism p K—= €. Hence every root of h has
formn wilej) for some ¢j and sorme «j. QED claim.

B the Clairm, the field extension

Oimo1,...oxs; q:lll:n},i.p1{&1},-..._:1:1(:::5};_ ...... ;q:d{l]],.npd(c:1},....,Lpd{c:5}} = L is
noryrnal cver 0. Moreover, since (o )T is in Qin.«i, e j-1), and ;i3
a O -hornomorphism of K, @ila (0 it in Qigiln)pileci), . pile =110
Thus each step in the extension L is a splitting fimld of a polynomial
of form MIl-c, over the previous stage, and L is thus & good radical
extarsion of 0. Since KCL, we ore done. QED lemma.

Rernark: !n the proof above, since Qln) = Qi (n)) for all j,

Oln,e1, espilat), pilagh spatec 1}, opdlesd) = L, is mlso & good
radical extension, and slightly simpler.

Exercise #E63) Let § be an irreducible polynomisl over G. Prove
that if one solution of f can be expressed in terms of redicals and
field operations, then sll solutions of f can be o expressed,

MNowr we nesd only a simple group theoretic Lernms:
Lemma: If G is a finite group, and KCG iz a normal subgroup, then G
is solvable iff both ¥ and H = G/K mre solveble,
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proof; Let {&] = Hp < H1 <..€ Hn = H be & composition series for H,
and {e} = Ko © K1 € € Kyy = K a composition seriss for K, end
p:G=H the canonical homornerphism, Then

(e} € Ko €...CHpn = p~1(Hp) € .. p-1{Hpn) = G is & composition
serims for G, and by the fundamental homearnarphism theorems the
set of simple components af this series is the union of the sets of
simple compeonents of H and of K. Thus the simple components of G
are all of prim# arder iff thosa of both K end H are. QED lermma.,

Cor: 1f FpeF1< ... < Fpy is 8 tower of fields, such that each extension
Fj-1 € Fj is norrmal, wrd alse FQ € Fp is (finite and) norrmal, and
each Galois group G(Fj/Fi-1) is soivakble, then G(Fn/FO} is solvakle. In
particular the Galois group of m good radical extension is solvable.
proot: By induction on n. 1f =l we are done. Let n > 1. Since 1t 13
trivial that sach extension Fj € Fp, iz also normal fer j » O, it [ollows
fram inducticn that the group of F1CFy iz solvakle, Wa know the
restriction homeornorphizsm S{Fn/Fol— G(F1/F0) is well defined and
=urjective, and its kernel is by definition equel to EFn/F1). Thus we
have an isomeorphism G(Fr/Fu)/G(Fn/F1) = &F1/Fg), and GlFy/FQ)
is salvable by the previous lermma. A good radical extension is a
tower of precisely the form given in the corollary. QED.

Now at last we can prove Galois’

Theorem: 1 f in Q[¥] is sclvable by radicals, then the Galows group
Golf) iz » solvable group,

proof: if F iz the splitting field of f, then we have QCFC L. where L is
sorne good redical extension. Then the surjective homomeorphisrm
GG{L)— GolF) shows, by the previous corollary and lemma, that
GoiF) is selvable QED theorsm.

Praposition: The polynarnial £(X) = X2 - BOX + Z has Galoiz group
isomerphic to 55, and hence is not solvable by radicals.

proof: We know already that an irreducible gquintic pelynomial over
€ with exactly 3 real roots has graup S5 1t follows from Elsenstein's
criterion that this polynomial is irreducible, and a little meax/min
theory from calculus shows that it has precisely three real roots.
tince we alsao know {el € A5 € 35 iy m cornposition series for 55, 1n
which A5 is m zimple group of arder 60, 55 iz not solvable QED.
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Exercise #70) Apply Eisenstein's criterion {helow) to prove
w5 - g0X + 2 is irreducible cver €, end use caloulus to prove that
this polynomial has exactly 3 resl roots,

Recall: "Eizenstein's criterion™: If fiX) = agtaiX+.  +ranXD, has
integer coefficients, and if some prime number p exists such that p
divides ag, a1, ...ap-1, hut p doss not divide ap, and pz doas not
divide ap, then f i$ irreducible over Q.

Exercise #71; Frove that the hypothesis of Eisenstein’s criterion
implies thet f is irreducible over Z, except for possible integer
factors. ["Gauts Leamnma’, proved Inter, implies | is then irreducible
mlse over Q)

Definition: Given an extension k<L, an element « of L is called
separable over k if the minimal polynomial of « over k is separable
{ie has distinct roots). The extension KCL is separable if every
elermnent of L iz separable over k.

Ewarcize ®72) (i) Givenn kCL (finite) normal, separeble, and k< Fcl,
prove the subfield of elements of L left fix ed by the subgroup
Gr{licig(l) is exactly F.

{ii) For any finite, normal, =spareble extension kCL, prove

s isubfields F with kcFeLl « #{subgroups of Gk(L)}, in particular the
number of interrnediate fields F betwesn k and L is finite.

Exercise w73 (i) If QCL is finite, and «,p are in L, prove thers
exist 3 & w in @ such that Q{e+xp) = Qloc+pp) [Hint: Prove there
mre pnly finitely many fields between O and L]

{ii) 1t QCL js finite, and o, p are in L, prove there is 2 in Q =uch that
Qlec+ap) = Qle, ph

fiii} 1f Q<L is finite, prove L = Q(y) for some ¥ in L,

Exercise #74) If p, q nre distinct primes, prove QC Q(p”z, qifz} iz
u normal extension, with Galois group somerphic to I2xf3.

Exepciza ¥ 75) Prove if #{¥) iz an irreducible cubit in Q[¥], the
Gajais group S0 iz isormerphic either to 23 or 33
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Exercize #78) Prove WI+Z is irraducible, separable over I7.

Exercise #77) If L iz the splitting field of ¥3+2 over 7, compute
the degree [L 27] and the Galois group LY

Exercise #7B) If ri is an integer and p & prime, such that X3+n is
irreducible but ¥2+3 is reducible in ZplXi, prove G{HE*nJ’IF} & T3




