- (1) Prove that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
- (2) (a) Prove that an arbitrary product of connected spaces is connected.
 - (b) Give an example of a connected space which is not path connected.
- (3) Prove that if $f: X \to Y$ is a quotient map and X is normal then Y is normal.
- (4) Use the homotopy covering property to prove that there exists a well defined bijection $\pi_1(S^1) \to \mathbb{Z}$. $(S^1 = 1$ -sphere)
- (5) Let X = real projective 2-space.
 - (a) Compute $\pi_1(X)$.
 - (b) Find all coverings of X.
 - (c) Does there exist a map $f: S^1 \to X$ which does not lift to the universal cover at X? Prove your answer.
- (6) Let X be the one point union of $S^1 \times S^1$ and S^1 . ($S^1 = 1$ -sphere)
 - (a) Compute $\pi_1(X)$.
 - (b) Compute $H_*(X)$.
- (7) Prove $S^n = \partial B^{n+1}$ is not a retract of B^{n+1} . $(S^n = n\text{-sphere in }\mathbb{R}^{n+1}, B^n = n\text{-ball in }\mathbb{R}^n)$
- (8) Prove any map $f: \mathbb{RP}^2 \to \mathbb{RP}^2$ has a fixed point. $(\mathbb{RP}^2 = \text{real projective 2-space})$
- (9) Let $f: S^2 \to S^2$ be the restriction of the composition of a rotation of \mathbb{R}^3 about the z-axis through an angle of $2\pi/3$ radians followed by a reflection in the x-y plane. Define $X = B^3/\sim$ where $x \sim f(x)$ for $x \in S^2 = \partial B^3$. ($B^3 = 3$ -ball in \mathbb{R}^3 , $S^2 = 2$ -sphere in \mathbb{R}^3)
 - * (a) Find a C. W. decomposition of X.
 - (b) Compute the cellular chain complex of X including the boundary operator.
 - (c) Compute $H_{\bullet}(X)$.